内容导读:
1 定义
2 问题背景和应用
3 相关关键词
4 问题分类
4.1 基于问题特点的分类
4.2 根据算法本质的分类
5 图像配准通用流程
5.1 基于特征的图像配准通用流程
6 图像配准质量评估标准
7 前人工作
8 相关开源工具
9 数据集
Image registration 图像配准
图像配准与相关 [1] 是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。
具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像(浮动图像,moving image)映射到另一幅图像(参考图像,fixed image)上,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。
图像配准常为图像融合的一个预处理步骤。 经过精确图像配准的图像对,通常可获得更好的融合效果。
一、定义
图像配准是使用某种算法,基于某种评估标准,将一副或多副图片(局部)最优映射到目标图片上的方法。
根据不同配准方法,不同评判标准和不同图片类型,有不同类型的图像配准方法。
(详见“问题分类”部分)
二、问题背景和应用
图像配准在计算机视觉、医学图像处理、材料力学、遥感等领域有广泛应用。
由于可应用图像配准的图像类型众多,暂时无法开发出可满足所有用途的通用优化方法。
图像配准在 医学图像处理与分析 中有众多具有实用价值的应用。 随着医学成像设备的进步,对于同一患者,可以采集含有准确解剖信息的图像诸如CT,MRI; 同时,也可以采集到含有功能信息的图像诸如SPECT。 然而,通过观察不同的图像进行诊断需要凭着空间想象和医生的主观经验。 采用正确的图像配准方法则可以将多种多样的信息准确地融合到同一图像中,使医生更方便更精确地从各个角度观察病灶和结构。 同时,通过对不同时刻采集的动态图像的配准,可以定量分析病灶和器官的变化情况,使得医疗诊断、制定手术计划、放射治疗计划更准确可靠。
在计算机视觉领域里,配准方法可被用来进行视频分析、模式识别,自动跟踪对象的运动变化。
在材料力学方面,配准通常用来研究力学性质,称为数字图像相关。 通过对不同相机不同传感器采集到的信息(形状,温度等)进行融合比较,可以计算得到例如应变场、温度场等数值。 通过带入理论模型可以进行参数反向优化等。
三、相关关键词
相近词:
image registration (mapping matching, co-registration alignment, fusion)
注: mapping 侧重于空间映射,fusion为图像融合,不仅包括配准还包括数据集成后的图像显示。
相近领域: