CNN做时间序列预测_使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测

该博客介绍了如何使用Keras构建一个结合CNN、双向LSTM和注意力机制的模型,应用于多维时间序列预测,特别是针对污染数据集的pollution维度预测。通过滑动时间窗口方法处理数据,然后利用定制的归一化方法预处理。网络结构参照了其他相关工作,并给出了训练过程。代码已上传至GitHub。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集

首先介绍一下我们的数据集,可以在我的github下载

该数据集是一个污染数据集,我们需要用该多维时间序列去预测pollution这个维度

构建训练数据

首先我们删去数据中date,wnd_dir维(注:为了演示方便故不使用wnd_dir,其实可以通过代码将其转换为数字序列)

data 

再对于数据进行归一化处理,这里因为工程需要,笔者自写了最大最小归一化,可以使用

sklearn的归一化函数代替

#多维归一化 返回数据和最大最小值

#多维归一化  返回数据和最大最小值
def NormalizeMult(data):
    data = np.array(data)
    normalize = np.arange(2*data.shape[1],dtype='float64')
    normalize = normalize.reshape(data.shape[1],2)
    print(normalize.shape)
    for i in range(0,data.shape[1]):
        #第i列
        list = data[:,i]
        listlow,listhigh =  np.percentile(list, [0, 100])
        # print(i)
        normalize[i,0] = listlow
        normalize[i,1] = listhigh
        delta = listhigh - listlow
        if delta != 0:
            #第j行
            for j in range(0,data.shape[0]):
                data[j,i]  =  (data[j,i] - listlow)/delta
    #np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值