数据集
首先介绍一下我们的数据集,可以在我的github下载
该数据集是一个污染数据集,我们需要用该多维时间序列去预测pollution这个维度
构建训练数据
首先我们删去数据中date,wnd_dir维(注:为了演示方便故不使用wnd_dir,其实可以通过代码将其转换为数字序列)
data
再对于数据进行归一化处理,这里因为工程需要,笔者自写了最大最小归一化,可以使用
sklearn的归一化函数代替
#多维归一化 返回数据和最大最小值
#多维归一化 返回数据和最大最小值
def NormalizeMult(data):
data = np.array(data)
normalize = np.arange(2*data.shape[1],dtype='float64')
normalize = normalize.reshape(data.shape[1],2)
print(normalize.shape)
for i in range(0,data.shape[1]):
#第i列
list = data[:,i]
listlow,listhigh = np.percentile(list, [0, 100])
# print(i)
normalize[i,0] = listlow
normalize[i,1] = listhigh
delta = listhigh - listlow
if delta != 0:
#第j行
for j in range(0,data.shape[0]):
data[j,i] = (data[j,i] - listlow)/delta
#np