推荐系统中的机器学习

本文介绍了召回层算法的基本原理,包括基于流行度、用户协同过滤、物品协同过滤、基于内容的推荐及关联规则等方法,旨在解决推荐系统的冷启动问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

召回层算法

  • 基于流行度(热门)的的算法

热门程度中的各种指标:点赞数、好评率、物品CVR(点击购买比)初步选出最合适的候选产品,这个可以解决冷启动的问题

  • 基于用户的协同过滤

先找到和他有相似兴趣的其他用户,用户的点击率和评论是一样的,对行为偏好的分析相似性,

两者购买过的物品的交集除以两者的并集,或者两者物品的并集处以两者集合的乘积开根号

  • 基于物品的协同过滤

相关物品的相似度similarity

  • 基于内容的物品推荐

各种商品的内容标签相关的推荐,比如内特容

  • 基于关联规则的物品偏好

Apriori和FP-Growth

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值