python层次聚类_python中做层次聚类,使用scipy.cluster.hierarchy.fclusterdata方法 | 学步园...

本文介绍了如何在Python中使用scipy.cluster.hierarchy.fclusterdata进行层次聚类,通过示例展示了在iris数据集和高斯随机数据上的应用,并探讨了样本数量和维度对聚类性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python机器学习包里面的cluster提供了很多聚类

但是没有看明白ward_tree的返回值代表了什么含义,遂决定寻找别的实现方式。

经过查找,发现scipy.cluster.hierarchy.fclusterdata能够实现层次聚类。有关这个方法的介绍在:http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fclusterdata.html

以下是具体的python代码

#coding=utf8

"""

# Author: waleking

# Created Time : 四 7/26 17:05:07 2012

Last Modified: 二 7/31 17:56:26 2012

# File Name: hierachical.py

# Description:

使用sklearn的层次聚类方法,具体的是ward_tree方法

测试数据采用iris数据,sklearn.datasets.load_iris()

但是发现sklearn.cluster.ward_tree方法没有看懂,实验stackoverflow里面的代码

http://stackoverflow.com/questions/9873840/cant-get-scipy-hierarchical-clustering-to-work

"""

import sklearn.datasets as datasets

import scipy.cluster.hierarchy as hcluster

import numpy.random as random

import numpy as np

import numpy.core.fromnumeric

import time

import matplotlib.pyplot as plt

def irisSampl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值