大语言模型系列 - Transformer:从基础原理到应用

👍 个人博客【 洛秋小站】洛秋资源小站【洛秋资源小站

大语言模型系列 - Transformer:从基础原理到应用

随着人工智能和自然语言处理(NLP)技术的不断发展,Transformer模型已成为现代深度学习中最为重要的模型之一。自从Vaswani等人在2017年提出Transformer以来,它已成为解决各种NLP任务的基础。本篇博客将详细介绍Transformer的基础原理、架构、应用场景以及如何进行模型的测试和优化。

一、Transformer简介

Transformer是由Google Brain团队在2017年提出的一种全新的神经网络架构,用于处理序列数据。不同于传统的循环神经网络(RNN)和长短期记忆网络(LSTM),Transformer完全基于注意力机制,不依赖于序列的顺序处理,使其能够更好地并行化训练。

Transformer模型在多个NLP任务中表现出了卓越的性能,如机器翻译、文本生成和问答系统等。其核心思想是通过自注意力机制来捕捉序列中各个位置之间的关系,从而实现高效的特征表示。

二、Transformer的基础原理

Transformer模型的核心组件包括自注意力机制、多头注意力机制、位置编码、残差连接和层归一化等。

自注意力机制

自注意力机制(Self-Attention)是Transformer的核心,它能够计算序列中任意两个位置之间的相似度。自注意力机制的输入是一个序列的特征表示,输出是相同维度的序列特征,但每个位置的特征是通过加权平均其他所有位置的特征得到的。

自注意力的计算公式如下:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q K K K V V V分别是查询、键和值矩阵, d k d_k dk是键的维度。

多头注意力机制

多头注意力机制(Multi-Head Attention)是对自注意力机制的扩展。通过引入多个独立的注意力头,模型能够从不同的子空间中学习到更加丰富的特征表示。

多头注意力机制的计算公式如下:

MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO

其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QW

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛秋_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值