文章目录
大语言模型系列 - Transformer:从基础原理到应用
随着人工智能和自然语言处理(NLP)技术的不断发展,Transformer模型已成为现代深度学习中最为重要的模型之一。自从Vaswani等人在2017年提出Transformer以来,它已成为解决各种NLP任务的基础。本篇博客将详细介绍Transformer的基础原理、架构、应用场景以及如何进行模型的测试和优化。
一、Transformer简介
Transformer是由Google Brain团队在2017年提出的一种全新的神经网络架构,用于处理序列数据。不同于传统的循环神经网络(RNN)和长短期记忆网络(LSTM),Transformer完全基于注意力机制,不依赖于序列的顺序处理,使其能够更好地并行化训练。
Transformer模型在多个NLP任务中表现出了卓越的性能,如机器翻译、文本生成和问答系统等。其核心思想是通过自注意力机制来捕捉序列中各个位置之间的关系,从而实现高效的特征表示。
二、Transformer的基础原理
Transformer模型的核心组件包括自注意力机制、多头注意力机制、位置编码、残差连接和层归一化等。
自注意力机制
自注意力机制(Self-Attention)是Transformer的核心,它能够计算序列中任意两个位置之间的相似度。自注意力机制的输入是一个序列的特征表示,输出是相同维度的序列特征,但每个位置的特征是通过加权平均其他所有位置的特征得到的。
自注意力的计算公式如下:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dkQKT)V
其中, Q Q Q、 K K K和 V V V分别是查询、键和值矩阵, d k d_k dk是键的维度。
多头注意力机制
多头注意力机制(Multi-Head Attention)是对自注意力机制的扩展。通过引入多个独立的注意力头,模型能够从不同的子空间中学习到更加丰富的特征表示。
多头注意力机制的计算公式如下:
MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,…,headh)WO
其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QW