
课程
文章平均质量分 84
张叫张大卫
放弃从来都是一件很容易的事情
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Stanford curriculum cs231n学习记录(1)神经网络前期知识
一、计算机视觉历史回顾与介绍 边缘定义了形状,大脑对视觉信息的的处理是基于边缘与形状的。 视觉处理从一些简单的形状开始,而不是一个整体;视觉是分层的。 Convolutional Neural Network (CNN) has become an important tool for object recognition Convolutional Neural Network (CNN)...原创 2018-05-30 22:10:11 · 371 阅读 · 0 评论 -
Stanford curriculum cs231n学习记录(3)卷积神经网络与计算机视觉任务
一、单个物体的分类与定位(图片的分类与定位) 任务要求:一幅图像上只有一个物体,识别这个物体的类别并且在图片中进行框选。 思路一: step1:训练或者是下载一个目标识别的网络(eg.AlexNet、VGG、GooLeNet) step2:在下载好的网络的特征提取层之后加入一个新的头部,用于框选回归(位置表示(x,y,w,h)) step3:使用SGD和L2损失训练新的上面的全连接层 ...原创 2018-07-17 14:35:18 · 509 阅读 · 0 评论 -
Stanford curriculum cs231n学习记录(2)神经网络基础
五、神经网络基础 神经网络系统理解:数学上,神经网络中的每一个神经元就是一个线性单元(f=Wx+b)加上一个激活函数,这个激活函数是一个非线性系统。线性系统在高维空间中线性划分区间,而神经网络由于引入了非线性环节,因此可以使用曲线划分空间。除此之外,神经网络多层神经元的引入增加了拟合函数的复杂度,因此,应该具有更好的拟合效果。如果从生物神经系统上进行解释,神经元通过自己的许多树突获取信号(线性单...原创 2018-07-20 09:39:47 · 339 阅读 · 0 评论