主成分分析PCA的一点思考

本文深入探讨了主成分分析(PCA)的理论基础及其在数据降维中的应用,包括计算原理、方法步骤、结果分析及常见误区。通过具体案例,如衣服尺寸指标的综合分析,展示了PCA如何将多维数据简化为关键主成分,提高数据处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 认识PCA

2. 计算原理

3. 计算方法

4. 结果分析

5. 主成分分析使用误区

6. 主成分分析结果聚类


1. 认识PCA

本质:降维

比如生产一件衣服,需要测量衣长、肩宽、袖长、袖宽诸多指标,可以综合为1~2指标,比如高矮的指标,胖瘦的指标。

 

2. 计算原理

3. 计算方法

4. 结果分析

5. 主成分分析使用误区

即:使用主成分分析进行排名比较。

6. 主成分分析结果聚类

7. 致谢

谢谢清风老师,给了我一个很好地学习平台(B站搜数学建模学习交流)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值