#解释为何复指数函数在《信号与系统》的数学推导中发挥关键作用
#本文图片和引用段落,如无备注,则默认出自《信号与系统》
离散时间信号
这是一个离散时间单位脉冲信号(图1.28),其数学表示如右图。
很显然,任意一个离散时间信号,可以分解为一系列单位脉冲信号在加权和移位后再求和。
该过程,可以在数学上表示为:
上述内容,我们相当于描述了如何把一个离散时间信号,分解成一系列单位脉冲信号,在经过幅值缩放和时延后,再求和。
离散时间线性时不变系统
离散时间系统就是输入和输出都是离散时间信号的系统,显然计算机里的所有数字信号处理算法都是离散时间系统。
不是所有的系统都可以被研究的。例如一个系统,对于相同的输入,每时每刻的输出不一样,完全没有确定性,那我们就没办法研究。又例如对于一个输入幅度大一点,输出就完全不一样了的系统,那也没办法研究。
在《信号与系统》里,我们只研究线性时不变系统:
1. 时不变指的是,如果在输入信号上有一个时移,那么输出信号产生同样的时移。(用大白话来说,无论是早上还是晚上,给同一个输入,会有相同的输出)
2. 线性指的是满足叠加性质。如果 的输出是
,那么
的输出就是
。
举个例子,用QQ音乐播周杰伦,我们能听到周杰伦,用b站播陈奕迅,我们能听到陈奕迅;这俩同时播放,我们能听到周杰伦+陈奕迅,而不会变成孙燕姿了。这就是叠加性质。
早上播和晚上播,效果是一样的,这就是时不变。
然而如果电脑没插电,播几个小时后就关机了,这就是时变了。说明真实世界中几乎没有线性时不变系统,但是我们总能在一定条件下(比如短时间内,比如输入信号不会过大)的条件下,当成是线性时不变系统来进行研究,如果没有线性时不变的数学特性,会变得举步维艰。
卷积和
前面我们学会了两个思路:
1. 我们可以把任意离散时间信号,分解成一系列单位脉冲信号在经过幅值缩放和时延后的求和。
2. 我们只研究线性时不变系统,这类系统满足时不变和叠加性质。
现在,我们来提出一个问题,有没有办法能够算出任意一个离散时间信号,输入一个离散时间线性时不变系统后产生的输出?
既然我们能够将任意离散时间信号分解成单位脉冲信号,那我们如果知道单位脉冲信号在这个离散时间线性时不变系统的输出,把这些单位脉冲输出经过幅值缩放和时延后再加起来,不就是原来信号的输出了吗,我们来用数学推导一下这个思路。
我们把单位脉冲的输出称为单位脉冲响应,一般可表示为。
针对这个数学结论,我们来演示一个实例,这样比较直观。
总结一下,对于一个离散时间线性时不变系统,只要我们知道其单位脉冲响应,则可以计算出任意离散时间信号的输出,岂不美滋滋。
而这个计算过程,我们可以使用一个新符号*进行简写,称为卷积。
也就是说离散时间信号输入一个离散时间线性时不变系统,输出为输入信号卷积系统的单位脉冲响应。
这里给大家提供一个网站,可以在线计算卷积
eigenfunction
如果输入信号是一个复指数信号,会发生什么?
我们令
其中是一个小数,显然
越小,
就是
越密集的采样。例如,若
,则:
我们可以简写为,毕竟只有n一个自变量,这样看起来更舒服。
接下来,我们求的输出,将
按上一章进行卷积计算:
第二第三步称为卷积的交换律,在此做简要证明
第四第五步,复数函数的运算规则,为了更透彻,在此展开说明
第五第六步,因为不是
的函数,可取出求和符号之外。
至此,证毕。得到结论:
这个式子意味着什么?
首先,是输入的复指数信号,而
并不是n的函数,也就是说,这个式子是一个常数(复数),上述式子变成:
也就是说一个复指数信号经过一个线性时不变系统后,其频率不变,只是幅值和相位改变了,而且从复数域来看,相当于幅值和相位的改变,就是只是乘以一个复数!这种优秀的数学性质,我们称复指数函数是该系统的eigenfunction。
傅里叶级数
经过上一章的论述,我们知道,一个复指数信号经过一个线性时不变系统后,只会改变幅值和相位,并不会改变频率,在数学上,就只是简单地乘以一个复数。
那么是否有可能,我们可以像第一节的思路一样,把任意信号,分解成一系列复指数信号之和,如果能证明这个结论成立,那么就可以得到一个新的视角:既任意一个信号,分解成一系列复指数信号,经过线性时不变系统后,仍然是这一系列复指数信号乘以常数后的和。
“把任意信号,分解成一系列复指数信号之和”,就是大名鼎鼎的傅里叶变换,也就是我们下一章的内容。