[从零手写VIO|第二节]从已有轨迹生成imu数据推导

本文提出一种连续时间框架下的视惯性同步定位与映射方法,利用Spline参数化匹配传感器运动,解决高帧率及多非同步设备问题。通过实验验证了该方法在多传感器视觉惯性SLAM及标定中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文在这儿
在这里插入图片描述
思路1指路——从零手写VIO|第二节——imu.cpp代码解析
思路2参考资料

摘要

本文介绍了一种通用的视惯性同步定位、映射和标定的连续时间框架。我们展示了如何使用Spline参数化,以密切匹配传感器的扭矩最小运动。与传统的离散时间方法相比,连续时间方法特别适用于解决高帧速率传感器和多个非同步设备的问题。通过建立多个非同步器件的相对位姿和内部参数,验证了该方法在多传感器视觉惯性SLAM和标定中的适用性。我们也通过评估和统一处理的全局滚动快门相机在视觉和视觉惯性SLAM系统展示了该方法的优点。

  1. 描述了一种使用廉价的传感器CMOS相机和MEMS IMU来实现SLAM的方法。我们利用一个连续时间模型来模拟相机的轨迹,这自然使我们能够融合来自许多不同步的、潜在的高速率传感器的信息,同时限制状态大小。我们明确地对相机的滚动快门进行建模(图1),并在惯性测量中产生误差。该模型不局限于视觉惯性SLAM,还可以简化其他传感器的集成,如旋转SICK激光雷达。

在这里插入图片描述

  1. 该方法的另一个重要应用是不同步的多传感器内部和外部最小二乘校正。通过定义连续时间模型中所有传感器的姿态,可以联合估计所有传感器的参数,包括测量时间导数的传感器,如陀螺仪和加速度计。给定近似的初始传感器配置,我们可以找到非常精确的传感器参数。

1. 连续时间的表示

1.1 相机位姿变换

我们用表示帧间齐次点变换的4*4矩阵来表示摄像机之间的变换。例如, T b , a T_{b,a} Tb,a表示将坐标系a中定义的齐次点变换为坐标系b中等价点的矩阵,我们可以分解 T b , a T_{b,a} Tb,a如下:
在这里插入图片描述

如果 T b , a T_{b,a} Tb,a表示在时间 ∆ t ∆t t秒内,在帧 T w , a T_{w,a} Tw,a与帧 T w , b T_{w,b} Tw,b(其中w为世界坐标系)之间以恒定的角速度和线速度运动,该速度可表示为矩阵形式为:
在这里插入图片描述
其中log是矩阵对数。对于矩阵组SE3,对数映射和它的逆(指数映射)可以以封闭的形式计算.

1.2 C2-continuous curves in SE3

我们的方法的核心是一个连续的轨迹表示。我们选择了这样一个公式:
1) 允许系统在线和批量运行
2) 系统具有C2的连续性,使我们能够预测IMU的测量值
3) 具有一个很好的近似最小扭矩轨迹
4) 是可参数化且无奇异点的刚体运动

Cubic B-Splines是R3中众所周知的轨迹表示法,但在处理3D旋转(如SO3中的插值)时却不那么容易应用。例如,C2的连续性不一定保留。我们选择使用使用Lie代数形成的累积基函数来参数化一个连续的轨迹。利用累积B-Splines基函数首次提出了四元数插值。这个表达式不仅是C2连续的,而且它还提供了一个非常简单的二阶导数公式。

1.2.1 Representing B-Splines with cumulative basis functions

B-Splines曲线的标准基函数表示为:
在这里插入图片描述
将式(1)重新组织成累积形式为:
在这里插入图片描述
在这里插入图片描述
写成矩阵形式:
在这里插入图片描述
其中,
在这里插入图片描述
在这里插入图片描述
我们可以重写方程2来描述SE3中的轨迹(指数对数映射之后得到):

在这里插入图片描述
假设控制点个数k=4,插值点在 [ t i , t i + 1 ] [t_i,t_{i+1}] [ti,ti+1]区间,则其样条值与 t i − 1 , t i , t i + 1 , t i + 2 t_{i-1},t_i,t_{i+1},t_{i+2} ti1,ti,ti+1,ti+2的基函数和控制点有关,得到:
在这里插入图片描述
展开得到:
在这里插入图片描述
其中 B ( u ( t ) ) B(u(t)) B(u(t))表达如下:
在这里插入图片描述

最终得到SE(3)下三次累积B-样条的公式变成了如下形式:
在这里插入图片描述
基于以上B-样条公式可以对IMU数据进行插值,推导过程如下:

首先IMU误差模型表达如下:
在这里插入图片描述
用B-样条方法可以得到连续时间下的陀螺仪角速率和加表的加速度值,重新表达以上公式,如下:
在这里插入图片描述
其中R,P为矩阵T的子集,要求出R的一介导和P的二阶导,需要先求出T矩阵的一阶、二阶导。将矩阵T表示公式简化如下:
在这里插入图片描述
其中对T矩阵求一阶、二阶偏导如下。

基于前面的求解可以得到,累积基的矩阵表示B和对时间的积分:
在这里插入图片描述
(7)
Spline轨迹中的位姿现在定义为:
在这里插入图片描述
所以,我们可以将姿态对时间的一阶导数和二阶导数表示为:
在这里插入图片描述
这里以A0计算推导为例,A1,A2推导步骤类似,这里就只推导A0:

首先对A0泰勒展开:
在这里插入图片描述
求一阶导如下:
在这里插入图片描述
求二阶导如下:
在这里插入图片描述
B0以及它的一阶、二阶导数见之前的式(7),整理得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
同样基于以上步骤可以推导出A1,A2以及它们的一阶二阶导数。

将这个过程反推上去,就可以计算出连续时间下imu的角速率和加速度信息。

<think>好的,我现在要帮助用户了解如何从开始实现视觉惯性里程计(VIO)。首先,我需要回忆VIO的基本概念和组成部分。VIO结合了视觉(如摄像头)和惯性测量单元(IMU)的数据,用于估计设备的运动轨迹和周围环境的结构。用户提到他们想手写代码实现,所以需要从基础开始逐步构建。 根据用户提供的引用,特别是引用[1]、[3]、[4],VIO的实现涉及初始化、传感器数据融合、状态估计、后端优化等。首先,我需要确定VIO的框架,比如松耦合还是紧耦合。引用[4]提到松耦合和紧耦合的分类,而通常紧耦合效果更好,但实现更复杂。因此,可能需要从松耦合开始,逐步深入。 接下来,步骤可能包括传感器数据的同步和时间戳对齐,这在引用[3]中提到了时间戳标定的重要性。然后是IMU和视觉数据的预处理,比如IMU偏校正和视觉特征点的提取与跟踪。 然后是状态估计,可能需要使用滤波方法(如卡尔曼滤波)或者优化方法(如非线性最小二乘)。引用[2]提到了高斯牛顿法用于曲线拟合,这可能在后端优化中使用。因此,后端优化部分需要实现如Bundle Adjustment结合IMU数据的方法。 此外,初始化过程是关键,引用[1]和[4]都提到需要正确的初始化和外参标定。可能需要使用视觉信息来初始化IMU的参数,比如尺度、重力方向等。 最后,代码实现部分需要分模块,比如数据读取、预处理、状态预测、优化、地图管理等。可能需要使用C++或Python,但用户提供的示例代码是Python,但实际VIO系统可能更常用C++以提高效率。 在实现过程中,需要注意IMU和视觉数据的同步,时间戳的处理,以及如何处理传感器丢失的情况,如引用[3]提到的视觉丢失时IMU顶替。此外,累积误差的问题需要通过回环检测或者全局优化来解决,但可能在初始实现中先处理局部优化。 可能还需要参考现有的开源项目,如VINS-Mono或OKVIS,了解它们的结构,但用户要求手写代码,所以需要从开始构建基本框架。 总结步骤可能为: 1. 传感器数据读取与同步 2. IMU数据预处理(去噪、偏校正) 3. 视觉特征提取与匹配 4. 初始化和外参标定 5. 紧耦合的滤波或优化方法实现 6. 后端非线性优化(如基于高斯牛顿法或LM算法) 7. 尺度估计和重力对齐 8. 处理累积误差和闭环检测 需要确保每个模块的正确性,逐步集成测试。例如,先实现IMU的积分和预测,再处理视觉的位姿估计,然后将两者融合。可能出现的问题包括时间不同步、参数标定不准确、优化过程中的数值不稳定等,需要通过调试和测试来解决。</think>### 从开始实现视觉惯性里程计(VIO)的步骤详解 #### 一、基础理论与框架设计 1. **VIO核心原理** VIO通过融合相机(视觉)和IMU(惯性)数据,估计载体在短时间内的相对运动。视觉提供环境特征点约束,IMU提供高频运动预测,两者互补: - IMU适合快速运动但存在偏漂移[^3] - 视觉适合慢速运动但能校正IMU偏并提供尺度信息[^4] 2. **系统框架选择** 推荐从**紧耦合**框架入手(直接融合原始数据),尽管实现复杂度高于松耦合,但精度更高: ```text VIO Pipeline: 传感器数据 → 时间同步 → 视觉特征提取 + IMU预积分 → 紧耦合优化 → 位姿输出 ``` --- #### 二、核心模块实现步骤 ##### 1. 传感器数据同步与预处理 - **时间戳对齐**:使用线性插值或滑动窗口对齐相机与IMU的时间戳[^1] - **IMU预处理**: - 偏校正:通过静止状态下的均值计算初始偏 - 角速度积分公式(四元数更新): $$ q_{t+1} = q_t \otimes \left[1, \frac{1}{2}\omega\Delta t\right]^T $$ 其中$\omega$为陀螺仪测量值 ##### 2. 视觉前端实现 ```cpp // 示例:ORB特征提取(OpenCV) cv::Ptr<cv::ORB> orb = cv::ORB::create(500); std::vector<cv::KeyPoint> kps; cv::Mat descriptors; orb->detectAndCompute(img, cv::Mat(), kps, descriptors); ``` - **光流跟踪**:使用LK光流法匹配相邻帧特征点 - **关键帧选择**:基于平移/旋转量阈值判断 ##### 3. IMU预积分 - 计算两帧图像间的IMU运动增量: $$ \Delta v = \sum_{k=i}^{j-1} (R_k a_k - g)\Delta t $$ $$ \Delta p = \sum \Delta v_k \Delta t $$ 其中$R_k$为姿态矩阵,$a_k$为加速度计测量值[^4] ##### 4. 紧耦合非线性优化 使用**滑动窗口优化**最小化视觉重投影误差与IMU预积分误差: $$ \min_{\mathbf{x}} \left( \sum \rho \left( \| r_p \|^2_{\Sigma_p} \right) + \sum \| r_I \|^2_{\Sigma_I} \right) $$ - 残差项: - 视觉残差$r_p = z - \pi(T_{cw}X)$ - IMU残差$r_I = \log\left( \Delta \hat{T}_{ij}^{-1} T_i^{-1} T_j \right)$ - 求解方法:高斯牛顿法或Levenberg-Marquardt算法[^2] --- #### 三、关键问题解决方案 1. **初始化** - **视觉-IMU外参标定**:通过手眼标定法计算$T_{imu}^{cam}$ - **尺度恢复**:单目视觉通过SFM计算特征点深度,结合IMU加速度约束求解尺度因子 2. **偏在线估计** 将加速度计和陀螺仪偏作为状态量加入优化变量: $$ \mathbf{x} = [T_{wb}, v, b_a, b_g, \lambda_1, ..., \lambda_n] $$ 3. **关键代码示例(C++伪代码)** ```cpp class VIOOptimizer { public: void addImuResidual(const ImuData& imu) { // 添加IMU预积分残差块 problem.AddResidualBlock( new ImuCostFunction(imu.delta_p, imu.delta_v, imu.delta_q), nullptr, pose_i, pose_j, bias_a, bias_g ); } void addVisionResidual(const Feature& feat) { // 添加视觉重投影残差块 problem.AddResidualBlock( new ReprojectionCost(feat.uv_observed), new CauchyLoss(0.5), pose, landmark ); } }; ``` --- #### 四、测试与调试建议 1. **仿真数据验证** 使用EuRoC MAV数据集,对比轨迹的ATE(绝对轨迹误差) 2. **真机调试技巧** - 优先调试IMU积分:静止状态下积分速度应趋近于 - 可视化特征跟踪:确保匹配点分布均匀且跟踪稳定 3. **性能优化方向** - 使用Schur补加速H矩阵求逆 - 引入FEJ(First Estimate Jacobians)避免线性化点不一致 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值