二分查找

定义

二分查找:
思路很简单,细节是魔鬼。
基本框架:

def find(nums,target):
    left = 0
    right = ***
    while left ** right:
        mid = (left + right) // 2
        if nums[mid] == target:
            ***
        elif nums[mid] > target:
            right = ***
        elif nums[mid] < target:
            left = ***
    return ***

以上框架中的**代表的内容就是细节,需要注意

应用

寻找一个数

def find(nums,target):
    left = 0
    right = len(nums) - 1   # 注意1
    while left <= right:    # 注意2
        mid = (left + right) // 2
        if nums[mid] == target:
            return mid
        elif nums[mid] > target:
            right = mid - 1   # 注意3
        elif nums[mid] < target:
            left = mid + 1   # 注意4

注意1:
right是数组长度 - 1,用的是左闭右闭的区间。
注意2:
用的是left <= right,即终止条件是left = right + 1。因为除了找到后结束搜索,还有一种情况是搜索区间为空,当区间为[right+1,right]时肯定为空了;但是如果用的是left < right,即终止条件是left = right ,当区间为[right,right]时区间并没有空,还有一个索引没有判断。
所以如果用left < right,则是以下代码:
在这里插入图片描述
注意3和注意4:
这个比较好理解。因为mid这个位置已经搜索过,所以没必要再搜索。

该算法是有缺陷的,对于所求目标在数组中重复的这种情况,比如[1,2,2,2,3],此时用这个算法返回的索引是2,但是有时候我们想找到target的左侧边界,比如索引1或者是target的右侧边界,比如索引3。

寻找左侧边界

如果要找一个有序数组中小于某个数的个数有多少个,则用以下代码:

def find(nums,target):
    left = 0
    right = len(nums)
    while left < right:
        mid = (left + right) // 2
        if nums[mid] == target:
            right = mid
        elif nums[mid] > target:
            right = mid
        elif nums[mid] < target:
            left = mid + 1
    return left  # 返回right也可以,因为left == right

所以在以上代码上进行改进就能得到某个数在数组中的左侧边界:

def find(nums,target):
    left = 0
    right = len(nums)         # 注意1
    while left < right:      # 注意2
        mid = (left + right) // 2
        if nums[mid] == target:
            right = mid      # 注意3
        elif nums[mid] > target:
            right = mid      # 注意4
        elif nums[mid] < target:
            left = mid + 1   # 注意5
    if left == len(nums):
        return -1
    return left if nums[left] == target else -1 

注意1:
right是数组长度 ,用的是左闭右开的区间。
注意2:
用的是left < right,即终止条件是left = right 。因为除了找到后结束搜索,还有一种情况是搜索区间为空,当区间为[right,right)时肯定已经为空了。
注意3:
当找到目标时并不是返回已找到,而是要继续在左侧寻找,看是否还有,因为要得到左侧边界。要切记是左闭右开。
注意4和注意5:
左闭右开,所以左面需要加一,右面不需要,因为取不上。

寻找右侧边界

def find1(nums,target):
    left = 0
    right = len(nums)         
    while left < right:      
        mid = (left + right) // 2
        if nums[mid] == target:
            left = mid + 1         # 注意1
        elif nums[mid] > target:
            right = mid      
        elif nums[mid] < target:
            left = mid + 1 
    if left == 0:
        return -1
    return (left -1) if nums[left-1] == target else -1   # 注意2

注意1:
当找到目标时并不是返回已找到,而是要继续在右侧寻找,看是否还有,因为要得到右侧边界。要切记是左闭右开。
注意2
return left - 1 中,写成return right - 1 也可以,因为left = right,为什么这样就能得到右侧边界呢?因为我们对left的更新是left = mid + 1,所以while循环结束时num[left]一定不等于target了。而 num[left-1]有可能是target。

总结

  1. 最基本的二分查找算法:
    初始化为 right = len(nums) - 1,所以决定了搜索区间是 [left, right],所以决定了 while (left <= right),同时也决定了 left = mid+1 和 right = mid-1,因为我们只需找到一个 target 的索引即可
    所以当 nums[mid] == target 时可以立即返回。
  2. 寻找左侧边界的二分查找:
    初始化 right = len(nums),所以决定了搜索区间是 [left, right),所以决定了 while (left < right)
    同时也决定了 left = mid+1 和 right = mid ,因为我们需找到 target 的最左侧索引,所以当 nums[mid] == target 时不要立即返回,而要收紧右侧边界以锁定左侧边界。
  3. 寻找右侧边界的二分查找
    因为我们初始化 right = len(nums),所以决定了我们的搜索区间是 [left, right),所以决定了 while (left < right),同时也决定了 left = mid+1 和 right = mid,因为我们需找到 target 的最右侧索引,所以当 nums[mid] == target 时不要立即返回而要收紧左侧边界以锁定右侧边界。又因为收紧左侧边界时必须 left = mid + 1,所以最后无论返回 left 还是 right,必须减一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值