定义
二分查找:
思路很简单,细节是魔鬼。
基本框架:
def find(nums,target):
left = 0
right = ***
while left ** right:
mid = (left + right) // 2
if nums[mid] == target:
***
elif nums[mid] > target:
right = ***
elif nums[mid] < target:
left = ***
return ***
以上框架中的**代表的内容就是细节,需要注意
应用
寻找一个数
def find(nums,target):
left = 0
right = len(nums) - 1 # 注意1
while left <= right: # 注意2
mid = (left + right) // 2
if nums[mid] == target:
return mid
elif nums[mid] > target:
right = mid - 1 # 注意3
elif nums[mid] < target:
left = mid + 1 # 注意4
注意1:
right是数组长度 - 1,用的是左闭右闭的区间。
注意2:
用的是left <= right,即终止条件是left = right + 1。因为除了找到后结束搜索,还有一种情况是搜索区间为空,当区间为[right+1,right]时肯定为空了;但是如果用的是left < right,即终止条件是left = right ,当区间为[right,right]时区间并没有空,还有一个索引没有判断。
所以如果用left < right,则是以下代码:
注意3和注意4:
这个比较好理解。因为mid这个位置已经搜索过,所以没必要再搜索。
该算法是有缺陷的,对于所求目标在数组中重复的这种情况,比如[1,2,2,2,3],此时用这个算法返回的索引是2,但是有时候我们想找到target的左侧边界,比如索引1或者是target的右侧边界,比如索引3。
寻找左侧边界
如果要找一个有序数组中小于某个数的个数有多少个,则用以下代码:
def find(nums,target):
left = 0
right = len(nums)
while left < right:
mid = (left + right) // 2
if nums[mid] == target:
right = mid
elif nums[mid] > target:
right = mid
elif nums[mid] < target:
left = mid + 1
return left # 返回right也可以,因为left == right
所以在以上代码上进行改进就能得到某个数在数组中的左侧边界:
def find(nums,target):
left = 0
right = len(nums) # 注意1
while left < right: # 注意2
mid = (left + right) // 2
if nums[mid] == target:
right = mid # 注意3
elif nums[mid] > target:
right = mid # 注意4
elif nums[mid] < target:
left = mid + 1 # 注意5
if left == len(nums):
return -1
return left if nums[left] == target else -1
注意1:
right是数组长度 ,用的是左闭右开的区间。
注意2:
用的是left < right,即终止条件是left = right 。因为除了找到后结束搜索,还有一种情况是搜索区间为空,当区间为[right,right)时肯定已经为空了。
注意3:
当找到目标时并不是返回已找到,而是要继续在左侧寻找,看是否还有,因为要得到左侧边界。要切记是左闭右开。
注意4和注意5:
左闭右开,所以左面需要加一,右面不需要,因为取不上。
寻找右侧边界
def find1(nums,target):
left = 0
right = len(nums)
while left < right:
mid = (left + right) // 2
if nums[mid] == target:
left = mid + 1 # 注意1
elif nums[mid] > target:
right = mid
elif nums[mid] < target:
left = mid + 1
if left == 0:
return -1
return (left -1) if nums[left-1] == target else -1 # 注意2
注意1:
当找到目标时并不是返回已找到,而是要继续在右侧寻找,看是否还有,因为要得到右侧边界。要切记是左闭右开。
注意2
return left - 1 中,写成return right - 1 也可以,因为left = right,为什么这样就能得到右侧边界呢?因为我们对left的更新是left = mid + 1,所以while循环结束时num[left]一定不等于target了。而 num[left-1]有可能是target。
总结
- 最基本的二分查找算法:
初始化为 right = len(nums) - 1,所以决定了搜索区间是 [left, right],所以决定了 while (left <= right),同时也决定了 left = mid+1 和 right = mid-1,因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回。 - 寻找左侧边界的二分查找:
初始化 right = len(nums),所以决定了搜索区间是 [left, right),所以决定了 while (left < right)
同时也决定了 left = mid+1 和 right = mid ,因为我们需找到 target 的最左侧索引,所以当 nums[mid] == target 时不要立即返回,而要收紧右侧边界以锁定左侧边界。 - 寻找右侧边界的二分查找
因为我们初始化 right = len(nums),所以决定了我们的搜索区间是 [left, right),所以决定了 while (left < right),同时也决定了 left = mid+1 和 right = mid,因为我们需找到 target 的最右侧索引,所以当 nums[mid] == target 时不要立即返回而要收紧左侧边界以锁定右侧边界。又因为收紧左侧边界时必须 left = mid + 1,所以最后无论返回 left 还是 right,必须减一。