自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 问答 (1)
  • 收藏
  • 关注

原创 知识图谱构建概念、工具、实例调研

知识图谱(Knowledge graph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自Semantic Web(语义网络),其最初理想是把基于文本链接的万维网落转化为基于实体链接的语义网络。1.本体:领域术语集合。

2024-11-26 23:17:00 2025

原创 0004绘制知识图谱的基本步骤

首先,你需要准备数据,这些数据可以是CSV文件,包含实体和它们之间的关系。例如,我们有两个列表,分别代表头实体(head)、关系(relation)和尾实体(tail)。使用networkx库来构建知识图谱,将DataFrame中的每一行作为图中的一个三元组(头实体、关系、尾实体)。使用matplotlib库来可视化知识图谱,展示节点和边。可以对知识图谱进行一些基本的分析,比如计算节点和边的数量。# 定义头实体、关系和尾实体。# 创建DataFrame。

2024-11-13 11:03:32 231

原创 0003扣子功能概述

扣子利用大型语言模型极大地简化了智能体的搭建过程。在充分利用大语言模型优势的同时,扣子还支持用户通过知识库、工作流等功能来配置智能体如何响应用户查询,以保证智能体的回复符合预期。

2024-11-12 23:49:32 1161

原创 0002什么是扣子

扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类智能体,并将智能体发布到各个社交平台、通讯软件或部署到网站等其他渠道。

2024-11-12 23:25:32 467

原创 0001大语言模型常见厂家及其基本信息

产品名称:通义千问简介:阿里达摩院推出的大模型,拥有千亿参数,适用于智能问答、知识检索、文案创作等场景。优点:中文理解较好,文本生成方便。

2024-10-30 16:58:07 427

原创 卷积神经网络(CNN)基本原理释义

卷积神经网络(Convolutional Neural Networks, CNN)这个概念的提出可以追溯到二十世纪80~90年代,但是有那么一段时间这个概念被“雪藏”了,因为当时的硬件和软件技术比较落后,而随着各种深度学习理论相继被提出以及数值计算设备的高速发展,卷积神经网络得到了快速发展。那究竟什么是卷积神经网络呢?以手写数字识别为例,整个识别的过程如下所示:话说回来,可以看到整个过程需要在如下几层进行运算:(1)输入层:输入图像等信息(2)卷积层:用来提取图像的底层特征。

2024-10-12 10:57:28 1281

原创 0004-Ultralytics YOLOv10

YOLOv10由清华大学的研究人员基于Ultralytics Python包构建,引入了一种实时对象检测的新方法,解决了之前YOLO版本中发现的后处理和模型架构缺陷。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10以显著降低的计算开销实现了最先进的性能。广泛的实验表明,它在多个模型尺度上具有卓越的准确性和延迟权衡。实时对象检测旨在以低延迟准确预测图像中的对象类别和位置。YOLO系列因其性能和效率之间的平衡而处于这项研究的前沿。然而,对NMS的依赖和架构效率低下阻碍了最佳性能。YOLOv10通过

2024-10-11 22:32:12 997

原创 0005-Ultralytics YOLO11

YOLO11是Ultralytics YOLO系列实时物体探测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。在之前YOLO版本令人印象深刻的进步的基础上,YOLO11在架构和训练方法方面进行了重大改进,使其成为各种计算机视觉任务的通用选择。

2024-10-10 23:59:30 1134

原创 0003-YOLO的使用方法

如果要在CUDA环境中安装,最佳做法是在同一命令中安装ultralytics、pytorch和pytorch-CUDA,以允许conda包管理器解决任何冲突,或者最后安装pytorch-CUDA,以便在必要时覆盖特定于CPU的pytorch包。Ultralytics YOLO11中的基准模式通过提供一个强大的框架来评估模型在各种导出格式下的速度和准确性,从而达到了这一目的。Ultralytics YOLO11中的导出模式提供了多种选项,可将训练好的模型导出为不同格式,使其可在各种平台和设备上部署。

2024-10-10 17:34:09 1288

原创 配置与安装相关环境(Anaconda 和 Pycharm)

一个是官网,另外一个是国内镜像网站。首先下载安装包:根据提示,一步一步安装,安装成功后记得勾选添加环境变量。

2024-10-07 23:17:45 265

原创 AutoDL使用注意事项

1.AutoDL中的路径设置为:/root/+复制路径。2.path路径:/root/+复制路径2.train路径:./dataset/image/train;3.val路径:./dataset/image/val;4.test路径:./dataset/image/test;

2024-10-07 22:55:39 1574

原创 0002-YOLO数据集及其制作

数据集的大小对于模型的性能和泛化能力有很大影响。通常,更多的图片可以提供更多的信息,有助于模型学习到不同的场景和物体变化。如果你的数据集中存在类别不平衡的情况(某些类别的样本数量远远多于其他类别),可以考虑采取一些措施来平衡类别分布,例如过采样或欠采样。标注的准确性对于模型的训练至关重要,因为模型将根据标注来学习物体的特征和位置。训练集用于模型的训练,验证集用于调整超参数和监控模型的性能,测试集用于最终评估模型的准确性。这里的train文件夹就是用来训练模型的数据,val文件夹是用来验证的模型准确率的。

2024-10-01 00:02:08 2835

原创 0001-VOC数据集及其制作

VOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis,Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCALVOc挑战赛主要包括以下几类:图像分类(Object Classification);

2024-09-30 11:10:44 1614

不同色彩模式下火灾图像颜色特征库

不同色彩模式下火灾图像颜色特征库

2023-01-03

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除