五、将 dataset 与 transforms、tensorboard 进行 结合

该博客介绍了如何在PyTorch中结合torchvision和TensorBoard进行数据预处理,特别是使用Compose方法应用ToTensor转换。通过加载CIFAR10数据集,对训练集和测试集进行设置,并在TensorBoard中展示前10张测试集图片,以实现数据的可视化。读者可以按照提供的代码在本地环境中运行TensorBoard以查看图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


明确transforms的常用类的使用方法后,可以进一步将dataset与transforms进行结合,逐步向实战方向进行

引入要用的模块

import torchvision
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter('log')

设置要对dataset中图片进行的操作

这里只compose了ToTensor方法,在使用过程中可以根据需要继续进行叠加

dataset_transfrom = torchvision.transforms.Compose([
   torchvision.transforms.ToTensor()
])

设置训练集和测试集

使用到了torchvision中的dataset,可以在pytorch官网中查看针对音频、文字、图片的各类数据集
在这里插入图片描述

这里使用的是torchvision中的CIFAR10数据集,将前10张图片在tensorboard中进行展示。

train_set = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=dataset_transfrom, download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=dataset_transfrom, download=True)

writer = SummaryWriter('log')

for i in range(10):
   img, target = test_set[i]
   writer.add_image('testset', img, i)

writer.close()

查看绘制的图像

在conda的pytorch环境中执行 tensorboard --logdir=log --port=6007
在这里插入图片描述
点击本地连接,即可查看,不再一一进行展示
在这里插入图片描述

完整代码

'''
因为处理图片的过程中肯定不是一张一张处理,所以本节主要进行dataset和transfrom的结合使用
'''
import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transfrom = torchvision.transforms.Compose([
   torchvision.transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=dataset_transfrom, download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=dataset_transfrom, download=True)

writer = SummaryWriter('log')

for i in range(10):
   img, target = test_set[i]
   writer.add_image('testset', img, i)

writer.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值