数据仓库概念入门记录

存在的意义

在这里插入图片描述
传统的数据仓库和大数据仓库

传统数据仓库由关系型数据库组成MPP(大规模并行处理)集群
缺点:
存储位置不透明:通过Hash确定物理存储位置,查询任务在所有节点都执行
扩展性有限:不同库之间交互对网络压力很大,分库分表也有上限,分库分表越多性能就越差。分布式事务实现会导致扩展性下降
热点问题/单点瓶颈:分库分表后,可能发生热点数据都在同一节点情况下。改节点容易发生宕机和超时等异常情况

大数据仓库
利用大数据天然的扩展性,完成海量数据的存放。
多副本存储可以解决单点问题,调度和计算拆分,数据共享,单节点可以局部运行
将SQL转为大数据计算引擎任务,完成数据分析
困难:
SQL支持率,分布式事务支持

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据仓库架构

架构
在这里插入图片描述
ETL

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ETL 工具

结构化数据工具:Sqoop,Kettle,Datastage,Informatica,Kafka
非/半结构化数据工具:Flume,Logstash

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

建模

在这里插入图片描述
在这里插入图片描述
ROLAP
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
MOLAP

在这里插入图片描述
常见的MOLAP产品:Kylin,Druid

多维分析
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

表类型

在这里插入图片描述
在这里插入图片描述
具体事实表
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
累积快照事实表实现方式

在这里插入图片描述
在这里插入图片描述

方式三更实用,减少冗余数据的情况

ETL策略

在这里插入图片描述

案例

简单架构例子
在这里插入图片描述在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱肉肉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值