
一天一个数据分析API
光看不敲没啥用,边看边敲吧,权当练打字速度。
Data_Designer
热衷于数据分析,大数据处理,机器学习等领域,天津大学,硕士学位,希望在编码和科研的过程中积累自己一点微不足道的经验,以后希望从事的工作方向为推荐系统和数据分析等领域,目前在网易伏羲Lab算法工程师实习。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
pandas时序图搞起-业务
# 创建simulator数据,暂时代替sql_process功能,模拟一种指标import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib.dates as mdates%matplotlib inline# 仿真数据data_label_1 = { 'server_1': np.random.randn(67), 'server_2': np.random.ran.原创 2021-05-31 22:15:27 · 397 阅读 · 0 评论 -
Pytorch-Training的一些高级操作
# 设置随机种子import torchimport randomimport numpy as npdef set_random_seed(seed=10,determinstic=False,benmark=False): random.seed(seed) np.random(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if determinstic: torch.backends.cudnn.d原创 2021-05-22 19:57:21 · 264 阅读 · 0 评论 -
TensorDataset、Dataset、DataLoader三兄弟的用法
TensorDataset和自定义的Dataset处理完以后送入DataLoader中,进行batch or shuffle操作TensorDataset:相当于Python中的Zip函数a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9]])b = to原创 2021-05-06 21:39:53 · 1569 阅读 · 0 评论 -
Pytorch的一些高阶操作整理
看到别人代码里惯用的一些操作,觉得自己的代码真的太low了。1. topk2. where3.gather:某一维度,根据每行都选择该列维度4. einsum原创 2021-04-10 00:02:35 · 552 阅读 · 0 评论 -
Tensorflow2 And Pytorch常用API整理
Tensorflow2PytorchModuleList和Sequence的区别:ModuleList and Sequencetorch.from_numpy:from_numpy()Numpy and Pandasnp.flatten:flatten原创 2021-03-24 23:09:57 · 316 阅读 · 0 评论 -
NCELoss的迷迷糊糊
猛然间回顾,发现自己对原来觉得理解的概念产生了疑惑,就包括这个负采样。tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=y, inputs=x_embed, num_sampled=num_sampled,原创 2021-03-19 15:43:18 · 641 阅读 · 0 评论