Anchor-free目标检测算法系列11: DenseBox中心点处dense:Unifying Landmark Localization with End to End Object Detec

DenseBox是一种2015年的端到端算法,结合目标检测和地标定位。它避免了提案生成和图像金字塔,专注于小目标和遮挡目标。通过卷积和上采样处理,DenseBox对输出特征图进行预测,影响了后来的anchor-free算法。该方法最初应用于人脸检测,使用裁剪图像进行训练,并以人脸为中心点创建GT。输出特征图经过上采样,具有高分辨率,每个像素对应一个框的置信度和位置。损失函数包括置信度和框回归的L2 loss。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

            DenseBox: Unifying Landmark Localization with End to End Object Detection

                                               (CVPR2015

    论文是2015年提出的一种端到端的算法,同时对目标进行分类和框回归,算法很有前瞻性。DenseBox不需要产生proposal、引入图像金字塔(这个思想后来演变成特征金字塔FPN),网络更加关注小尺寸和严重遮挡的目标。网络经过一列卷积核池化,进行上采样是特征图变大,用于检测更多的目标,再经过一些卷积得到最终的预测输出。这样看来,DenseBox的思想也影响这最近一年中提出来的anchor-free的算法,均是在下采样后又进行上采样,最后再接一些卷积模块预测。DenseBox将输出的特征图转换为目标框,通过NMS和阈值进行输出。

       DenseBox设计的初衷是用在人脸检测上。作者为了节约训练时间,没有将一整张图片全部输入网络,而是对输入图片进行了裁剪,裁剪的区域应包括人脸和背景丰富的patches,训练时patches缩放至240*240。在GT生成时,构建的是60*60*5维的张量,人脸区域由以人脸bbox的中心点为圆心、半径为0.3倍于bbox size(人脸的标注框为方形)的圆形区域确定,这也是DenseBox的由来,增加了正样本的比例,而现在较多的anchor-free的方法是采高斯分布+带惩罚的Focal loss予以改进。现在的基于关键点检测的中心点确定一般采用高斯分布处理,而不是像DenseBox这样设置。示意图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值