自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(138)
  • 收藏
  • 关注

原创 1. 随机微分方程中耗散性条件的含义

摘要:随机微分方程中的耗散性条件描述了系统对能量或距离差异的抑制特性,表现为漂移项满足压缩性不等式。该条件能保证解的非爆炸性、存在唯一不变测度及长时间稳定性。通过Wasserstein距离分析表明,在耗散性条件下,不同初始条件产生的解会随时间指数收缩收敛。这一性质在证明随机微分方程的稳定性和收敛性方面具有重要作用。

2025-08-06 16:55:07 12

原创 概率论角度: Laplace 算子和分数阶 Laplace 算子

在nnn维欧几里得空间RnRn中,给定一个足够光滑的标量函数fxf(x)fxΔfx∑i1n∂2f∂xi2xΔfx:=i1∑n​∂xi2​∂2f​x∇2fdiv⁡∇f∇2fdiv∇f即梯度的散度。

2025-08-05 12:29:46 850

原创 随机模拟专题:第二课

2025-06-11 10:47:29 146

原创 随机模拟专题:第一课

2025-05-27 15:22:59 178

原创 基于 Metropolis 的朗之万算法

根据 Besag (1994) 的建议,我们构造了基于 Metropolis 的朗之万算法 (MALA)。

2024-09-08 16:19:00 1330

原创 3. Matérn协方差模型与随机偏微分方程

对应的高斯马尔可夫随机场 (GMRF)可以通过使用某种随机偏微分方程(SPDE)明确构造,当由高斯白噪声驱动时,随机偏微分方程的解是具有 Matérn 协方差函数的高斯场(GF)

2024-07-18 00:08:36 1355 1

原创 2. 高斯场和高斯马尔可夫随机场

高斯场协方差矩阵计算问题一直是一个瓶颈,有一种方法是用高斯马尔可夫随机场替换高斯场来逼近协方差函数,以此来简化计算上的复杂度。

2024-07-10 12:12:50 1970

原创 1. 高斯过程的定义

高斯过程

2024-07-09 22:20:52 780

原创 2. Encoder-Decoder for Simulations

ED for Simulations

2024-07-05 16:12:48 152

原创 1. 基于循环神经网络的反事实预测-正弦波数据

Sine Data Simulations

2024-07-05 16:10:31 186

原创 3. train_encoder_decoder.py

【代码】train_encoder_decoder.py。

2024-07-02 15:48:32 322

原创 1.1. 大数定律-独立性

主要介绍概率极限理论中的大数定律

2024-06-19 12:25:15 645

原创 5.3. 平稳序列-次可加遍历定理

次加性遍历定理

2024-06-19 11:41:03 157

原创 5.2.平稳序列-Birkhoff遍历定理

独立同分布序列是平稳序列, 并且在位移变换φ\varphiφ下遍历, 该序列满足强大数定律

2024-06-19 11:35:03 304

原创 5.1.平稳序列-平稳序列和遍历的定义

关于平稳序列的重要定理是遍历定理(强大数定律推广到平稳序列)

2024-06-18 16:26:23 170

原创 4.1. 马氏过程及其构造

马氏过程及其构造

2024-06-18 16:09:33 176

原创 4.3. 马氏过程-马氏过程与算子半群

给定一个无穷小生成元, 可以确定一个算子半群, 从而确定马氏过程的转移概率.

2024-06-18 15:57:08 240

原创 3.8. 马氏链-一般状态空间的马氏链(Harris链)

将把从可数状态空间的结果推广到具有不可数状态空间的马尔可夫链的集合中, 称为Harris链

2024-06-18 15:22:41 206

原创 3.7. 马氏链-周期马氏链的极限分布和循环分解

周期马氏链的极限分布和循环分解

2024-06-18 14:58:42 211

原创 3.6. 马氏链-极限分布与周期性

本节的第一个主题是研究第n次的转移概率pn(x,y)渐近性.

2024-06-18 14:47:45 361

原创 3.5. 马氏链-平稳测度(2)

本节首先介绍平稳测度的定义及其示例, 然后给出可逆测度的定义, 并且说明可逆测度是平稳测度, 初始分布可逆的马氏链, 其对偶马氏链的转移概率和本身的转移概率相同(这也是可逆测度被称为可逆的原因).

2024-06-17 16:59:59 143

原创 3.5. 马氏链-平稳测度(1)

本节首先介绍平稳测度的定义及其示例, 然后给出可逆测度的定义, 并且说明可逆测度是平稳测度,

2024-06-17 16:58:21 243

原创 3.4.马氏链-随机游走的常返性

随机游走常返性

2024-06-17 16:37:31 559

原创 3.3. 马氏链-常返和非常返

常返和非常返的判定

2024-06-16 20:42:05 553

原创 3.2. 马氏链-马氏链的构造及马氏性(2)

本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.

2024-06-16 19:05:04 602

原创 3.2. 马氏链-马氏链的构造及马氏性(1)

本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.

2024-06-16 19:03:33 153

原创 3.1. 马氏链-马氏链的定义和示例

对于可数状态空间的马氏链,马氏性指的是给定当前状态, 其他过去的状态与未来的预测无关.

2024-06-16 18:38:40 1328

原创 2.5. 连续时间鞅-半鞅

半鞅

2024-05-12 23:57:39 320

原创 2.4. 连续时间鞅-局部鞅

局部鞅

2024-05-12 23:53:38 368

原创 2.3. 连续时间鞅-平方可积的连续鞅

平方可积的连续鞅

2024-05-12 23:41:28 194

原创 2.2. 连续时间鞅-左闭右开区间上的鞅

有无穷项的离散时间鞅, 对应着连续时间时左闭右开区间上的鞅.

2024-05-12 23:29:50 114

原创 2.1. 连续时间鞅-闭区间上的鞅

离散时间的有限项或虽有无限项但有终端值的鞅的概念, 在连续时间对应着 闭区间上的鞅.

2024-05-12 23:25:37 310

原创 1.9. 离散时间鞅-组合方法分析随机游动(不用鞅方法)

离散时间鞅-组合方法分析随机游动(不用鞅方法)

2024-05-12 23:11:49 97

原创 1.8. 离散时间鞅-无界停时定理与随机游走

无界停时定理与随机游走

2024-05-12 22:08:06 283

原创 1.7. 离散时间鞅-反向鞅

反向鞅 一个反向鞅(有些作者称之为可反转的鞅)是一个负整数指标的鞅

2024-05-12 21:19:00 132

原创 1.6. 离散时间鞅-鞅的L1收敛,反向鞅

本节主要介绍一致可积鞅的$L^1$收敛性质.

2024-05-12 20:44:36 186

原创 1.5. 离散时间鞅-平方可积鞅

平方可积鞅是指初值$X_{0}=0$的鞅$X_{n}$,并且对所有$n$,$E X_{n}^{2}

2024-05-12 20:25:46 383

原创 1.4. 离散时间鞅-鞅的Lp收敛,鞅与停时 (2)

鞅的L^p收敛p > 1,鞅与停时鞅的L^p收敛(p > 1),鞅与停时2. 极大值不等式2.1. Doob不等式-时间有界2.2. LpL^{p}Lp极大值不等式3. 鞅的LpL^pLp收敛定理}鞅的L^p收敛(p > 1),鞅与停时2. 极大值不等式2.1. Doob不等式-时间有界我们知道, 从总趋势上看, 下鞅是上升的, 因此它在某个区间上的极大值在某种意义下应该能由其终端值控制. 同样, 上鞅的极值应该能用其初值控制.定理4.4.2 (Doob不等式-时间有界) 令X

2024-05-12 19:53:35 170

原创 1.4. 离散时间鞅-鞅的Lp收敛,鞅与停时 (1)

利用鞅变换和Doob停止定理证明$(X_N,\mathcal{F}_n)$可选停时定理(可以利用停止$\sigma$代数的性质,进一步得到$X_N,\mathcal{F}_N$可选停时定理),利用$(X_N,\mathcal{F}_n)$可选停时定理,我们可以证明Doob不等式,即下鞅极大值被终端值的期望控制,以此可得$L^{p}$极大值不等式,最后,我们利用$L^{p}$极大值不等式证明鞅的$L^p$收敛($p>1$)性.

2024-05-12 19:50:41 211

原创 1.3. 离散时间鞅-鞅几乎必然收敛的应用

我们将应用鞅收敛定理来推广第二Borel-Cantelli引理,并研究波利亚之瓮、Radon-Nikodym导数和分支过程.这四个主题是相互独立的.

2024-05-12 19:24:18 198

随机系统的计算方法:采样,梯度下降和方差缩减

随机系统的计算方法:采样,梯度下降和方差缩减

2025-06-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除