- 博客(138)
- 收藏
- 关注
原创 1. 随机微分方程中耗散性条件的含义
摘要:随机微分方程中的耗散性条件描述了系统对能量或距离差异的抑制特性,表现为漂移项满足压缩性不等式。该条件能保证解的非爆炸性、存在唯一不变测度及长时间稳定性。通过Wasserstein距离分析表明,在耗散性条件下,不同初始条件产生的解会随时间指数收缩收敛。这一性质在证明随机微分方程的稳定性和收敛性方面具有重要作用。
2025-08-06 16:55:07
12
原创 概率论角度: Laplace 算子和分数阶 Laplace 算子
在nnn维欧几里得空间RnRn中,给定一个足够光滑的标量函数fxf(x)fxΔfx∑i1n∂2f∂xi2xΔfx:=i1∑n∂xi2∂2fx∇2fdiv∇f∇2fdiv∇f即梯度的散度。
2025-08-05 12:29:46
850
原创 基于 Metropolis 的朗之万算法
根据 Besag (1994) 的建议,我们构造了基于 Metropolis 的朗之万算法 (MALA)。
2024-09-08 16:19:00
1330
原创 3. Matérn协方差模型与随机偏微分方程
对应的高斯马尔可夫随机场 (GMRF)可以通过使用某种随机偏微分方程(SPDE)明确构造,当由高斯白噪声驱动时,随机偏微分方程的解是具有 Matérn 协方差函数的高斯场(GF)
2024-07-18 00:08:36
1355
1
原创 2. 高斯场和高斯马尔可夫随机场
高斯场协方差矩阵计算问题一直是一个瓶颈,有一种方法是用高斯马尔可夫随机场替换高斯场来逼近协方差函数,以此来简化计算上的复杂度。
2024-07-10 12:12:50
1970
原创 3.8. 马氏链-一般状态空间的马氏链(Harris链)
将把从可数状态空间的结果推广到具有不可数状态空间的马尔可夫链的集合中, 称为Harris链
2024-06-18 15:22:41
206
原创 3.5. 马氏链-平稳测度(2)
本节首先介绍平稳测度的定义及其示例, 然后给出可逆测度的定义, 并且说明可逆测度是平稳测度, 初始分布可逆的马氏链, 其对偶马氏链的转移概率和本身的转移概率相同(这也是可逆测度被称为可逆的原因).
2024-06-17 16:59:59
143
原创 3.2. 马氏链-马氏链的构造及马氏性(2)
本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.
2024-06-16 19:05:04
602
原创 3.2. 马氏链-马氏链的构造及马氏性(1)
本节首先构造马氏链, 即构造活动概率空间: 在序列空间中构造$P_x,P_\mu$, 使得在这个概率空间的点为马氏链; 基于该活动概率空间讨论马氏性和强马氏性.
2024-06-16 19:03:33
153
原创 1.4. 离散时间鞅-鞅的Lp收敛,鞅与停时 (2)
鞅的L^p收敛p > 1,鞅与停时鞅的L^p收敛(p > 1),鞅与停时2. 极大值不等式2.1. Doob不等式-时间有界2.2. LpL^{p}Lp极大值不等式3. 鞅的LpL^pLp收敛定理}鞅的L^p收敛(p > 1),鞅与停时2. 极大值不等式2.1. Doob不等式-时间有界我们知道, 从总趋势上看, 下鞅是上升的, 因此它在某个区间上的极大值在某种意义下应该能由其终端值控制. 同样, 上鞅的极值应该能用其初值控制.定理4.4.2 (Doob不等式-时间有界) 令X
2024-05-12 19:53:35
170
原创 1.4. 离散时间鞅-鞅的Lp收敛,鞅与停时 (1)
利用鞅变换和Doob停止定理证明$(X_N,\mathcal{F}_n)$可选停时定理(可以利用停止$\sigma$代数的性质,进一步得到$X_N,\mathcal{F}_N$可选停时定理),利用$(X_N,\mathcal{F}_n)$可选停时定理,我们可以证明Doob不等式,即下鞅极大值被终端值的期望控制,以此可得$L^{p}$极大值不等式,最后,我们利用$L^{p}$极大值不等式证明鞅的$L^p$收敛($p>1$)性.
2024-05-12 19:50:41
211
原创 1.3. 离散时间鞅-鞅几乎必然收敛的应用
我们将应用鞅收敛定理来推广第二Borel-Cantelli引理,并研究波利亚之瓮、Radon-Nikodym导数和分支过程.这四个主题是相互独立的.
2024-05-12 19:24:18
198
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人