简介
在Java的并发编程领域中,Fork-Join并发处理框架有着独特的地位和作用,它背后蕴含着分治的思想理念。所谓分治思想,就是把一个规模较大的任务,按照一定的规则,递归地拆分成多个规模较小的子任务,这个拆分过程会持续进行,一直到拆分出来的子任务足够小,小到可以方便地进行处理为止。
优势
Fork-Join框架充分利用了多线程所具备的优势,能够实现并发处理这些被拆分出来的小任务。多个线程可以同时对不同的小任务开展工作,极大地提高了任务处理的效率,缩短了整体任务的执行时间,让程序可以在多核处理器的环境下更加高效地运行。
局限
然而,在实际的开发应用中,Fork-Join框架却存在一些局限性。首先,它在开发中的使用频率并不是很高,这主要是因为其提供的API相对来说比较复杂,开发人员在使用时往往需要花费较多的精力去理解和掌握,很难做到快速上手并应用到项目中,而且从某种程度上来说,它并没有真正简化开发流程,反而增加了一定的开发难度。所以,对于大多数开发人员而言,理解其背后的分治思想就足够了,在实际选择使用时可能就会比较谨慎。
注意点
那在使用Fork-Join框架的时候,又有哪些需要注意的要点呢?
-
一是关于线程池的使用。在大多数情况下,一个比较明智的决定是为每个应用程序或者系统仅仅使用一个线程池。因为如果线程池数量过多,可能会带来诸如资源竞争、管理复杂等一系列问题,而使用默认的公共线程池往往是不错的选择,除非有特定的性能调整需求,否则没必要去另行创建复杂的线程池配置。
-
二是合理设置阈值将ForkJoinTask拆分为子任务。这个阈值的把握很关键,如果阈值设置不合理,要么会导致任务拆分得过细,增加管理和调度成本,要么就是拆分不够充分,无法充分发挥多线程并发处理的优势,所以需要根据具体的业务场景和数据规模等来精心确定合适的阈值。
-
三是要尽力避免在ForkJoinTask中出现任何阻塞情况。一旦出现阻塞,就会影响整个并发处理的流程,线程可能会陷入等待状态,无法高效地利用多核资源,从而导致整体性能下降。
虽然Fork-Join框架有诸多使用上的注意事项,但它也有着比较适合的应用场景,比如在数据处理方面,像对大量数据进行筛选、清洗等操作;在结果汇总场景中,能够将多个子任务处理得到的结果有效地汇总起来;还有统计相关的业务场景,例如对数据进行各种维度的统计分析等,它都能发挥一定的作用。
以Java8为例,java.util.Arrays类就运用了Fork-Join框架,在其parallelSort()方法中,通过这个框架实现了对数组排序的高效并发处理,使得数组排序在多核环境下能够更快地完成。
总结
尽管Fork-Join框架有着工作窃取机制,理论上能够带来性能的提升,可在实际的研发过程中,由于其API的复杂性较高,开发人员对其的可控性相对其他一些API来说要差一些,这也使得它在很多项目中的应用受到了一定限制,开发人员往往会综合权衡后再决定是否选用该框架来处理并发任务。
用的不多,理解其背后的分治思想就足够。
若有大规模并发处理的需求,不放考虑下Spring Batch。Spring Batch 是一个轻量级的综合批处理框架,旨在开发对企业系统日常运行至关重要的强大批处理应用程序。 Spring Batch 提供了在处理大量记录时必不可少的可重用功能,包括日志/跟踪、事务管理、作业处理统计、作业重启、跳转和资源管理。 它还提供了更先进的技术服务和功能,通过优化和分区技术实现了极高容量和高性能的批处理作业。 无论是简单还是复杂的大容量批处理工作,都能以高度可扩展的方式利用该框架来处理大量信息。
并且,Spring Batch 可以很容易地与其他 Spring 框架集成,如 Spring Cloud 等,用于构建分布式的批量处理系统,适应企业级大规模数据处理的需求。