机器学习中的距离/散度/熵

本文详细介绍了机器学习中的信息量、信息熵、交叉熵、KL散度、联合信息熵与条件信息熵、互信息以及Variation of Information。通过公式和性质解析,帮助读者理解这些概念在衡量数据分布差异和编码效率中的作用,并强调了它们在损失函数、决策树等应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、信息量
  1. 定义:用一个信息的编码长度。
  2. 性质:编码长度与出现的概率成负相关。(如:哈夫曼编码)
  3. 公式(0/1编码)
    I = log ⁡ 2 ( 1 p ( x ) ) = − log ⁡ 2 ( p ( x ) ) I=\log_2(\frac{1}{p(x)})=-\log_2(p(x)) I=log2(p(x)1)=log2(p(x))
二、信息熵
  1. 定义:一个分布的信息量。(编码的平均长度/信息量的均值)
  2. 公式
    H ( p ) = ∑ x p ( x ) l o g 2 ( 1 p ( x ) ) = − ∑ x p ( x ) log ⁡ 2 ( p ( x ) ) H(p)=\sum_x{p(x)log_2(\frac{1}{p(x)})}=-\sum_x{p(x)\log_2(p(x))} H(p)=xp(x)log2(p(x)1)=xp(x)log2(p(x))
三、交叉熵 cross-entropy
  1. 定义:用猜测的分布 ( p ) (p) (p)的编码方式 编码 真实的分布 ( q ) (q)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值