tensorflow代码cpu上可以跑gpu跑报错Blas GEMM launch failed

当TensorFlow在CPU上运行正常,但在GPU上遇到'Blas GEMM launch failed'错误时,通常是因为TensorFlow尝试占用全部GPU显存。解决方法是在启动Session时,设置GPU内存增长策略为按需分配,而不是一次性全部分配。通过修改代码,将`tf.Session()`替换为`tf.compat.v1.Session(config=config)`,其中`config=tf.compat.v1.ConfigProto()`并添加`config.gpu_options.allow_growth=True`,即可实现按需分配显存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 问题:tensorflow调gpu显存分配的问题。tensorflow默认申请可使用的全部显存,当tensorflow程序运行会话却没有关闭会话释放资源的时候,就会出现此错误。
  2. 解决办法:将建立会话后默认的分配全部现存改成按需分配。
  3. 具体:
    在运行Session时将:
with tf.Session() as sess:

替换为

gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=tf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值