reweight的学习(meta)

本文探讨了LD(hS)的影响因素,包括被UC性质约束的验证误差和评估误差。reweight学习旨在通过为每个样本损失添加权重来校正样本偏差,如label噪声和类别不平衡。加权的目标是根据样本重要性调整损失,用于主动学习中选择具有代表性的训练样本。当前,reweight的权重通常通过验证集训练一个模型来学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. L D ( h s ) L_D(h_s) LD(hs)的影响因素

L D ( h S ) = L D ( h S ) − L V ( h S ) + L V ( h S ) − L S ( h S ) + L S ( h S ) L_D(h_S)=L_D(h_S)-L_V(h_S)+L_V(h_S)-L_S(h_S)+L_S(h_S) LD(hS)=LD(hS)LV(hS)+LV(hS)LS(hS)+LS(hS<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值