
ML
梁小娘子
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
两个多变量分布间的KL散度+变分子编码
参考两个多变量高斯分布之间的KL散度原创 2020-10-29 18:55:03 · 470 阅读 · 0 评论 -
解析解
解析解:对于某一个函数,可以写出解的表达式,根据参数,直接得到的具体的解;数值解:采用某种计算方法,如有限元的方法,数值逼近,插值的方法,得到的解。举例:方程 2y=x解:y=0.5x——解析解x=1时,y=0.5——数值解参考解析解...原创 2020-09-25 10:58:19 · 544 阅读 · 0 评论 -
西瓜书boosting learning 集成的错误率推导
参考Hoeffding霍夫丁不等式及其在集成学习理论的应用原创 2020-09-23 17:12:20 · 1015 阅读 · 2 评论 -
【ML课 刘学军】 第一课 20200907
先用无监督学习分析数据分布,再用有监督学习,可能会提高性能。欠拟合/good 拟合:测试误差与训练误差差不多;过拟合:测试误差>>训练误差。原创 2020-09-07 17:04:10 · 121 阅读 · 0 评论 -
机器学习中的距离/散度/熵
信息量,信息熵,交叉熵,KL散度和互信息(信息增益)KL散度、JS散度、Wasserstein距离一文搞懂散度(KL,MMD距离、Wasserstein距离)原创 2019-12-11 15:19:14 · 707 阅读 · 0 评论 -
读ML论文步骤
阅读技巧(读三遍)【第一遍】浏览论文,理解大意看:标题->摘要->引言->段落和小结标题(不看数学部分)->总结->扫引用目标:明确作者的目的;论文主要贡献;论文解决的问题是否是我感兴趣的内容。【第二遍】读全部内容,尽力高度理解论文中的数学部分。看:图表+说明(不分析公式分解)目标:尽力评估实验结果(是否重复?结果有明显的证据支撑吗?)...原创 2019-11-18 19:29:16 · 373 阅读 · 0 评论