14 剪绳子

本文介绍了一个关于绳子切割的经典动态规划问题。给定一根长度为n的绳子,通过切割并重新组合使其乘积最大。文章提供了一段Java代码实现,通过动态规划算法来解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    public int maxCut(int length){
        if (length < 2){
            return 0;
        }
        if (length == 2){
            return 1;
        }
        if (length == 3){
            return 2;
        }
        int[] memo = new int[length + 1];
        //前四个存储的是绳子的本来长度,不切割
        memo[0] = 0;
        memo[1] = 1;
        memo[2] = 2;
        memo[3] = 3;

        int max;
        for (int i = 4; i <= length; i++) {
            max = 0;
            for (int j = 1; j <= i/2; j++) {
                int temp = memo[j] * memo[i - j];
                if (max < temp){
                    max = temp;
                }
                memo[i] = max;
            }
        }
        max = memo[length];
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值