【深度学习】如何计算AP(平均精度)和mAP(平均精度均值)?

起因:最近导师给买了本书,叫做《智能计算系统》(陈云霁等人编著),让我上b站看看教材对应的视频。不得不说这书写的确实不错,b站上的视频讲的也还可以。书和视频的内容可以相互补充,比如视频对于一些细节讲的不清楚,看一下书对应的部分就能了解得差不多。书讲的不清楚的地方就可以按照标注的附录去找原材料,基本就能搞懂~

所以先推荐一波书+视频,有兴趣的可以看看~

b站视频链接:

https://www.bilibili.com/video/BV1WE411A7tv

我现在刚看到第三章,讲到计算AP和mAP的地方不太明白,就去书上标注的附录找到援引的文件,在这里附上链接:

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf

 

①首先介绍一下Recall(召回率/查全率)和Precision(精度/查准率):

以一张图片物体检测为例,检测算法框出N=1000个框,正确检测出物体A的框有k=50个,实际上图片中有M=100个物体A:

Recall = k / M

Precision = k / N

Recall和Precision之间是有关系的,如果大幅度增加检测框,比如增加100万个框,此时k↑,M→,N↑↑,那么召回率↑、精度↓

于是引入AP,来衡量测试集中某一个类的分类误差,并

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值