题目:
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
思路:
这个题得画图,把每个关系画出来,多画几种情况。
用这个,可以写出最小的代码
然后将最小代码递归,从而实现这样的图形
首先,从后序遍历中取值,后续遍历的逻辑是:先左节点,后右节点,最后根节点。
所以重建树结构的逻辑为,从数组中,先pop最后一个,作为跟节点,再pop最后一个作为右节点,再pop最后一个作为左节点。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
int postIndex;
int[] postorder;
int[] inorder;
Map<Integer,Integer> index_map = new HashMap<Integer, Integer>();
public TreeNode helper(int left_index,int right_index){
if (left_index>right_index){
return null;
}
int rootVal = postorder[postIndex];
TreeNode root_node = new TreeNode(rootVal);
int index = this.index_map.get(rootVal);
postIndex-=1;
TreeNode right_node = helper(index+1,right_index);
TreeNode left_node = helper(left_index,index-1);
root_node.right = right_node;
root_node.left = left_node;
return root_node;
}
public TreeNode buildTree(int[] inorder, int[] postorder) {
this.postorder = postorder;
this.inorder = inorder;
this.postIndex = postorder.length-1;
for (int i=0 ; i<inorder.length ; i++){
index_map.put(inorder[i],i);
}
return helper(0,postIndex);
}
}