1. 介绍
光学字符识别(Optical Charater Recognition, OCR) 是针对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。
2. OCR思路
- 文字检测:解决的问题是哪里有文字,文字的范围有多少。
- 文字识别:对定位好的文字区域进行识别,主要解决问题是每个文字是什么,将图像中的文字区域进行转化为字符信息。
2.1 图像预处理
动机
常见图片存在文字布局多样,扭曲,模糊,光线不均等问题,如果不做处理,直接使用,容易丢失大量有效信息,从而导致识别效果低下。
常用图像处理
- 几何变形(透视、扭曲、旋转等)
- 畸形矫正
- 去除模糊
- 图像增强
- 光线矫正
图像预处理方法
传统方法
- 介绍:基于数字图像处理和传统机器学习等方法对图像进行处理和特征提取
- 常用方法: HoG
- 优点:有利于增强简单场景的文本信息
- 缺点:对于图像模糊、扭曲等问题鲁棒性很差,对于复杂场景泛化能力不佳
深度学习方法
- 介绍:基于深度学习的神经网络作为特征提取手段
- 常用方法:基于CNN的神经网络
- 优点:CNN强大的学习能力,配合大量的数据可以增强特征提取的鲁棒性,面临模糊、扭曲、畸变、复杂背景和光线不清等图像问题均可以变现良好的鲁棒性 <