程序员跨界,从写软件修改BUG到修空调的实战经验

做为程序员的学习能力肯定很强,修BUG不在话下,程序员跨界去修电器也是很快上手,虽然刚开始辛苦点,但靠在坚持,这不我在今天下午给人修空调,辛苦赚了250。

空调修好后
空调修好后

这家空调是格力立式空调,出厂到现在都15年了,说是以前一直没问题,现在开机显示FC,导风板不动,疑似卡住。

到家后,插电开机确实显示FC,导风板只能稍微动一下,关机也是稍微动一下。

不管怎么样都得断电拆机,这个空调要先拆下面部分,两边有盖子拿掉,里面是两颗螺丝。
在这里插入图片描述

拆掉后,拆上面部分,顶上3颗螺丝,上部分底下2颗螺丝,螺丝都拆了后,用手拖着下面往上用力抬,很久没拆的话,会很费力,多抬几次。
在这里插入图片描述
拆开后是这样的,这里我已经把黑塑料板螺丝也都拆了,可见这个电机都发霉生锈了
在这里插入图片描述
在这里插入图片描述

基本确定是电机问题,下面就要拆电机,这里是重点了,有人研究了一下午都不知道怎么拆,就差把这塑料板砸了,要用一字螺丝刀顶住缝,往上撬,时间久了就会很难撬,几乎不动,多撬几次,那个铁齿轮就出来了

在这里插入图片描述
很多老经验的修空调师傅看到这样的齿轮,都以为是拆这个铁片,可能是插进半轴的,或者说可能有小的螺丝固定的,都不是,要用一次螺丝刀从齿轮下面撬,这个齿轮是套在电机半轴上的
在这里插入图片描述

在这里插入图片描述
拆掉就好弄了,换新电机
在这里插入图片描述
按原样装回去,螺丝拧好,不要最后多出几颗螺丝(少几颗,关系也不大,这老格力空调,螺丝真tm多)
在这里插入图片描述
线束整理好,要不然上面部分装不上
在这里插入图片描述
电机线沿着这个管道,撸好,查到下面主板上,位置拆的时候记好。
在这里插入图片描述
换上后,先不用都装好,万一出什么问题,没弄好,先自己测试一下,插电开机,滑动门正常开启,关机,滑动门正常关闭,搞定,把螺丝都拧好,装机完成。

在这里插入图片描述
都搞定,里面有灰尘的稍微擦擦,辛苦赚个250。


最后推荐一下作者的本行,欢迎来学习:
Prometheus 系列文章

  1. Prometheus 的介绍和安装
  2. 直观感受PromQL及其数据类型
  3. PromQL之选择器和运算符
  4. PromQL之函数
  5. Prometheus 告警机制介绍及命令解读
  6. Prometheus 告警模块配置深度解析
  7. Prometheus 配置身份认证
  8. Prometheus 动态拉取监控服务
  9. Prometheus 监控云Mysql和自建Mysql

Grafana 系列文章,版本:OOS v9.3.1

  1. Grafana 的介绍和安装
  2. Grafana监控大屏配置参数介绍(一)
  3. Grafana监控大屏配置参数介绍(二)
  4. Grafana监控大屏可视化图表
  5. Grafana 查询数据和转换数据
  6. Grafana 告警模块介绍
  7. Grafana 告警接入飞书通知

Spring Boot Admin 系列

  1. Spring Boot Admin 参考指南
  2. SpringBoot Admin服务离线、不显示健康信息的问题
  3. Spring Boot Admin2 @EnableAdminServer的加载
  4. Spring Boot Admin2 AdminServerAutoConfiguration详解
  5. Spring Boot Admin2 实例状态监控详解
  6. Spring Boot Admin2 自定义JVM监控通知
  7. Spring Boot Admin2 自定义异常监控
  8. Spring Boot Admin 监控指标接入Grafana可视化
内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿提说说

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值