《剑指offer》 矩形覆盖(Java)

探讨使用2×1小矩形无重叠覆盖2×n大矩形的方法总数,发现其规律符合斐波那契数列特征,通过递归算法实现解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

解题思路

下面这个图只列举了3种情况,其中当n的3的时候,第一种方法可以看作是RectCover(1),后两种方法列举就可以看作是RectCover(2),当继续寻找n=4,n=5的时候,会发现满足RectCover(n)=RectCover(n-1)+RectCover(n-2),此时n>2。这就可以当成斐波那契数列解决。
在这里插入图片描述

AC代码
public class Solution {
    public int RectCover(int target) {
        if(target<1)
            return 0;
        if(target==2||target==1)
            return target;
        return RectCover(target-1)+RectCover(target-2);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值