给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
- 输入:s = 7, nums = [2,3,1,2,4,3]
- 输出:2
- 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
提示:
- 1 <= target <= 10^9
- 1 <= nums.length <= 10^5
- 1 <= nums[i] <= 10^5
1.暴力破解(超时,时间复杂度超了)
class Solution {
public:
int MIN(int x, int y) {
if (x > y) {
return y;
}
return x;
}
int minSubArrayLen(int target, vector<int>& nums) {
int sum, minLen = 0, curLen;
for (int i = 0; i < nums.size(); i++) {
sum = 0;
curLen = 0;
for (int j = i; j < nums.size(); j++) {
sum += nums[j];
curLen++;
if (sum >= target) {
if (minLen == 0) {
minLen = curLen;
} else {
minLen = MIN(minLen, curLen);
}
}
}
}
return minLen;
}
};
2.滑动窗口
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。
那么滑动窗口如何用一个for循环来完成这个操作呢。
首先要思考 如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置。
如果只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?
此时难免再次陷入 暴力解法的怪圈。
所以 只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置。
那么问题来了, 滑动窗口的起始位置如何移动呢?
这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:
class Solution {
public:
int MIN(int x, int y) {
if (x > y) {
return y;
}
return x;
}
int minSubArrayLen(int s, vector<int>& nums) {
int ans = INT32_MAX;
int num = nums.size();
int start = 0, end = 0;
int sum = 0;
for (end = 0; end < num; end++) {
sum += nums[end];
while (sum >= s) {
ans = MIN(ans, end - start + 1);
sum -= nums[start];
start++;
}
}
return (ans == INT32_MAX?0:ans);
}
};