yolov5/v7/v8随机种子固定方法

参考:https://blog.csdn.net/qq_45062768/article/details/133852543
https://blog.csdn.net/qq_45062768/article/details/133204618
在这里插入图片描述
yolov7的
在这里插入图片描述

import pkg_resources as pkg
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
    # Check version vs. required version
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    return result


def set_seeds(seed=0, deterministic=False):
    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
    if deterministic and check_version(torch.__version__, '1.12.0'):  # https://github.com/ultralytics/yolov5/pull/8213
        torch.use_deterministic_algorithms(True)
        torch.backends.cudnn.deterministic = True
        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
        os.environ['PYTHONHASHSEED'] = str(seed)

二、开启随机种子设置
在train.py中Ctrl+F搜索init_seeds函数并将其注释,导入set_seeds函数:

# init_seeds(2 + rank)
set_seeds(2 + rank, deterministic=True)

这样随机种子就设置完成,确保每次运行时的随机数生成是可重复的。不过请注意,设置种子只能保证模型在相同的种子值下生成相同的随机数序列,但不能保证模型的训练结果完全相同。(少量数据集下训练结果是完全相同的)。

固定种子
随机种子:
torch.manual_seed(seed) 调用的cpu的种子固定
torch.cuda.manual_seed(seed) 调用的gpu种子固定
torch.cuda.manual_seed_all(seed) 调用的全部gpu种子固定

np.random.seed(seed) 用于固定多线程相关
random.seed(seed)
os.environ['PYTHONHASHSEED'] =str(seed) 固定哈希算法种子,比如set等操作都有涉及,
注意看到的文档说哈希相关调用较早,设置种子的时候可能存在滞后,建议直接export设置

模型训练速度会变慢!
torch.backends.cudnn.deterministic = True 是否使用确定性算法,1.9版本之后被最下面的替代
torch.backends.cudnn.benchmark = False 是否关闭卷积优化,会影响速度

#torch.backends.cudnn.enabled = True 启用或禁用cudnn加速,这个应该不影响啊!  
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16:8' 这个是cuda10.2之后建议指定,里面的比值也有多种
torch.use_deterministic_algorithms(True) 1.9版本之后的,更为严格
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值