每日一道Leetcode - 剑指 Offer 14- I. 剪绳子【动态规划】

本文探讨了一种解决绳子切割问题的方法,通过动态规划算法寻找最佳切割方案以获得最大乘积。具体实现中定义了一个名为Solution的类,并在该类内实现了cuttingRope方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

class Solution {
    public int cuttingRope(int n) {
        int[] dp = new int[n+1];
        for(int i = 2;i<=n;i++){
            for(int j = 1;j<i;j++){
                dp[i] = Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
            }
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值