试图理解 Decagon(四)结果

Decagon模型在预测多药物副作用方面表现出色,优于单边预测模型和其他多预测模型。研究发现,Decagon能有效利用图数据进行端到端训练,提升预测准确性。在未验证的前五名预测中,大部分能找到理论依据,侧面证明了模型的有效性。进一步分析发现,副作用嵌入中距离相近的反应更可能同时发生。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结果

对多药物副作用的预测

在这里插入图片描述
我们可以看到 Decagon的性能要比单边预测模型(tensor-based)其他好很多
同时,Decagon的性能也要好于其他多预测的模型,由于这些模型不能容纳 更多的信息,所以相较来说性能较差
我们的结果与”在图数据中使用端到端训练模型会提高性能“相一致
同时,我们的结果发现 Decagon能够更好地预测

对Decagon特别结果的探究

首先,让Decagon对所有drug pair都进行预测,然后用预测结果构造一个三元组排名(根据可能性),然后排除掉所有已知的反应,研究剩下的排名最高的
在这里插入图片描述
在最高前十名的五个预测中都找到了相应的理论支撑,说明模型设计的很不错

探究Decagon的副作用嵌入

在这里插入图片描述
经过研究,发现在嵌入中距离较近的两个反应,它们更有可能会同时出现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值