imgaug是一个用于机器学习实验中图像增强的库。它支持广泛的增强技术,允许轻松组合这些技术并以随机顺序或在多个 CPU 内核上执行它们,具有简单而强大的随机界面,不仅可以增强图像,还可以增强关键点/地标、边界框、热图和分割图。
主要内容:
安装
在 Anaconda 中安装
在 pip 中安装
卸载
示例:基础知识
标准用例
一个简单通用的增强序列
重型增强
示例:关键点
笔记本
一个简单的例子
示例:边界框
笔记本
一个简单的例子
处理图像外的边界框
移动/移动边界框
将 BB 投影到重新缩放的图像上
计算交集、联合和 IoU
示例:热图
笔记本
一个简单的例子
每个热图对象有多个子热图
访问热图数组
调整热图大小
填充热图
示例:分割图和掩码
笔记本
一个简单的例子
使用布尔掩码
访问分割图数组
调整大小和填充
随机参数
简介
连续概率分布
离散概率分布
算术
特殊参数
噪声参数
混合/叠加图像
简介
Imagewise 常量 Alphas 值
BlendAlphaSimplexNoise
频率噪声Alpha
迭代噪声聚合器
乙状结肠
增强器概述
增强器.meta
增广算法
增强器.artistic
增强器.blend
增强器.blur
增强器.collections
增强器.color
增强器对比
增强器.卷积
增强器.debug
增强器.edges
增强器.flip
增强器几何
增强器.imgcorruptlike
增强器.pillike
增强池
增强器.分割
增强器大小
增强器.天气
性能
结果概览
图像
热图
关键点和边界框
数据类型支持
教程链接:https://imgaug.readthedocs.io/en/latest/index.html