DeepXDE:科学计算与PINN物理信息神经网络的深度学习库

DeepXDE 是一个用于科学机器学习和物理信息学习(Physics-Informed Learning)的库,主要用于解决各种偏微分方程(PDEs)、常微分方程(ODEs)、积分微分方程(IDEs)等数学问题。该库支持多种前沿的物理信息神经网络(PINNs)方法,并且能够有效地处理不同类型的物理建模任务。DeepXDE 的核心目标是将深度学习方法与物理领域的传统数值计算方法结合,促进科学计算和工程建模的高效求解。
在这里插入图片描述
源代码:https://github.com/lululxvi/deepxde

主要特点和功能

  1. 物理信息神经网络(PINN) :
    • 常规 PINN :用于解决常微分方程(ODEs)和偏微分方程(PDEs)的正向和反向问题。
    • fPINN :用于解决分数阶偏微分方程(fPDEs)的正向和反向问题。
    • PINN 与硬约束(hPINN) :用于解决反向设计和拓扑优化问题。
    • 多尺度 Fourier 特征 PINN :增强 PINN 在多尺度问题中的表现。
    • 残差自适应采样
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值