不定积分-微分逆运算-求导的逆运算
写这篇博客主要是加深自己对不定积分的理解,方便自己回忆,也是为了学习后面的知识做储备,同时用自己的理解方式举几个解决问题的例子。
求导和反求导
上一篇我们讲了微分,微分可以理解为如何寻找导数的过程
y′=f′(x)=limΔx→0f(x+Δx)−f(x)Δx=ΔyΔx=dydxy^{'}=f^{'}(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\Delta y}{\Delta x}=\frac{dy}{dx}y′=f′(x)=Δx→0limΔxf(x+Δx)−f(x)=ΔxΔy=dxdy
导数为y的微分和x的微分相除。
那么积分就可以说是寻找导数的反函数的过程或者是微分的逆运算。
我们还是举一个例子说明,小明从在时刻0开始匀加速直线跑向学校(当然现实中是不可能实现),距离S和时间t的关系S=t2S=t^2S=t2,则速度和时间的关系就是S函数的导函数v=2tv=2tv=2t。
如下图:
从图中可以看出,S的导函数就是v,那么我们求不定积分的过程就是求v的反函数S,如果我们已知v=2tv=2tv=2t,那么它的反函数就是S=t2+cS=t^2+cS=t2+c,这个c就是未知量,所以我们称之为不定积分。通过导函数求不定积分可表示为
∫2t dt=t2+C \int {2t} \,{\rm d}t =t^2+C∫2tdt=t2+C
上面的C反应出来的就是不定积分的不定。以为所有常数的求导都会为0,导数反函数的任何常数项求导后,都为0;
总结
F′(x)=f(x)F^{'}(x)=f(x)F′(x)=f(x)
f(x)f(x)f(x)的不定积分表示为:
∫f(x) dx=F(x)+C \int {f(x)} \,{\rm d}x =F(x)+C∫f(x)dx=F(x)+C
先讲到这里,后续继续更新