基于铁路天窗的集装箱多式联运路径优化(LW+源码+讲解+部署)

  

在全球贸易蓬勃发展的当下,传统运输方式的局限性愈发明显,集装箱多式联运成为优化运输体系的关键。我国铁路货运虽地位重要,但与其他运输方式的衔接存在不足,铁路天窗时段利用效率也有待提高。

围绕铁路天窗在集装箱多式联运路径优化中的应用展开通过深入分析铁路天窗对运输路径选择的影响,构建了全面的路径优化模型。该模型纳入运输成本、时间、距离和不确定性等要素,将铁路天窗作为核心参数,旨在实现运输效率的最大化。通过引入铁路天窗的概念,本文进一步优化了模型,使得在铁路运输环节能够更高效地利用资源,减少运输过程中的等待和延误,从而提升了整体的运输效率。在算法性能方面,遗传算法在大规模问题处理上效率突出,能快速得出近似最优解。

铁路作为一种低碳、高效的运输方式,提升其在多式联运中的比重有助于减少整个运输过程中的碳排放,研究表明,在增加了铁路天窗这一约束条件后,运输路径会保证货物不在铁路停运时间到达车站,减少了运输过程中的中转和等待时间,优化铁路天窗的使用,可以进一步减少空驶率和单车能耗,对提升物流效率、降低成本、推动绿色物流发展有意义重大。

关键词:铁路天窗,集装箱多式联运,路径优化,遗传算法

目录

第一章 绪论 6

1.1 研究背景 6

1.2 研究目的 7

1.3 研究内容 7

1.4 国内外研究现状 8

1.5 研究方法 11

1.6 论文结构与框架 11

1.7 论文创新点 12

第二章 相关概念及理论概述 14

2.1 铁路天窗概念 14

2.2 多式联运概述 14

2.3 路径优化方法 15

2.4 铁路天窗在路径优化中的应用 15

第三章 集装箱多式联运路径优化模型构建 17

3.1 路径优化问题定义 17

3.2 路径优化模型的假设条件 17

3.3 路径优化模型的数学表达 18

3.4 模型的求解策略 19

3.5 模型的约束条件 20

第四章 算法设计与实现 23

4.1 遗传算法设计 24

4.2 算法性能评估 26

4.3 算法实现与验证 26

第五章 实验验证与结果分析 27

5.1 实验设计 27

5.2 实验结果 27

5.3 案例分析 29

第六章 结论与展望 33

6.1 研究结论总结 33

6.2 未来研究方向 33

参考文献 35

致谢 37

第一章 绪论

1.1 研究背景

随着全球化进程的加速,交通运输行业要以更高的要求来满足内外贸易的日益增长。根据国际货运运输组织(IATA)的统计,全球货运量在过去十年间年均增长约4.3%。在这样的背景下,传统的运输方式的弊端逐渐显现公路运输面临着拥堵、环境污染和高成本等问题,而铁路运输则由于单一的运输方式,灵活性不足,且在长途运输中效率较低。

与之对比的集装箱多式联运作为一种新型的运输模式,逐步成为解决传统运输模式问题的有效途径。集装箱多式联运通过结合铁路、公路、水路等不同运输方式,能够在提高运输效率的同时还能降低运输成本,并减少能源消耗和环境污染。国际上,集装箱多式联运已经在欧美等地区得到了广泛应用。比如说,欧洲的多式联运市场在过去十年中增长了近10%,其中铁路与公路的结合已成为其主要模式。根据欧盟交通委员会的数据显示,欧盟区域内多式联运的市场份额在全球范围内居于领先地位,铁路在集装箱运输中的比例已达到25%以上。而在美国,尽管公路运输依旧占据主导地位,但铁路运输在长距离集装箱运输中也发挥着越来越重要的地位

根据2023年中国铁路总公司发布的数据,我国铁路总运营里程已超过14万公里,其中高铁里程达到4万公里,居世界首位。铁路货运在我国物流体系中占据重要地位,但其运输方式单一,缺乏与其他运输方式的高效衔接,特别是在铁路天窗时段的利用上存在较大的发展空间怎么能充分利用这些天窗时段,优化集装箱运输路径,提高时效性和降低成本,是目前研究的重点。

根据2023年数据显示,我国高速公路总里程已超过15万公里,居世界领先地位。然而,公路运输也面临着交通拥堵、环境污染以及能源消耗等问题,迫切需要寻求更为高效、低碳的运输模式。通过集装箱多式联运,尤其是与铁路的结合,可以有效减轻公路运输的压力,提升运输系统的整体效率。

在水运方面,我国的内河航道通航里程已超过12万公里,海港泊位数量超过10,000个,构成了一个庞大的水运网络。随着“一带一路”倡议的推进,国内港口与铁路、公路的联动日益增强,港口在集装箱运输中扮演着重要角色。根据交通运输部的统计数据,近年来我国集装箱运输的年增长率保持在10%以上,铁路集装箱运输的比例逐步提升,形成了铁路、公路和水路互联互通的运输网络。

面对国内外运输模式的巨大变化,政府对多式联运的支持力度不断加大。2015年发布的《国家物流枢纽布局与建设规划(2015-2020年)》提出,要加强铁路与其他运输方式的互联互通,推动集装箱多式联运的发展。2020年出台的《现代综合交通运输体系发展规划纲要》中明确指出,要加快多式联运发展,优化铁路与其他运输方式的衔接,提升运输效率和服务质量。因此,研究铁路天窗在集装箱多式联运路径优化中的应用,不仅有助于提升铁路集装箱运输的效率,还能为我国物流体系的优化提供理论支持,推动我国交通运输行业向高效、绿色、智能化方向发展。

1.2 研究目的

本研究的主要目标是通过优化铁路天窗的使用,提升集装箱多式联运的效率和效益。随着物流行业的快速发展,如何高效利用像铁路天窗这些空闲时间,优化集装箱多式联运的运输路径,是目前提高整体运输效率的关键。

在现代物流体系中,集装箱多式联运受到广泛关注,不同运输方式之间的衔接不够顺畅便会导致运输时间延长和成本上升。特别是在铁路运输环节,由于天窗时间的存在,如果没有合理安排运输计划,就很容易造成运输延误和资源浪费。

本研究将深入分析铁路天窗如何影响集装箱多式联运的路径选择,并基于此构建一个充分利用天窗时间的路径优化模型。这个模型将综合考虑运输时间、成本、运输能力等多方面因素,以达到提高运输效率和经济效益的双重目标。

研究将通过收集和分析铁路运输网络布局、天窗时间安排和集装箱运输需求等,来构建一个贴近实际情况的路径优化模型。通过这一优化方式,预计将大幅提升集装箱多式联运的运输效率降低运输成本,从而为企业带来更大的经济效益。同时,这一研究还将有助于提升物流行业的服务质量和竞争力,推动我国物流行业向更加高效、绿色和智能的方向发展。

1.4 研究内容

本研究旨在深入探讨如何通过改进铁路天窗来优化集装箱多式联运路径,从而提升运输效率和经济效益。在构建路径优化模型时,我们将综合考虑多个因素,其中包括运输成本、运输时间、运输距离以及运输过程中可能出现的不确定性。通过分析这些因素之间的关系,我们将建立一个反映实际情况的路径优化模型。铁路天窗将作为模型中的重要参数,确保在路径规划时能够充分利用这一时间段,提升整体运输效率。

本研究通过探讨铁路天窗在集装箱多式联运路径优化中的应用,构建合理的路径优化模型并设计高效的求解算法,旨在提升运输效率和经济效益,推动绿色物流发展。

1.5 国内外研究现状

近年来,随着全球贸易的不断发展,集装箱多式联运作为一种高效的运输方式,受到了广泛关注。刘紫怡在其研究中探讨了节点换装对中欧集装箱多式联运路径优化的影响,提出通过优化换装节点,可以显著提高运输效率和降低成本。郭枫晨针对铁路集装箱多式联运,提出了考虑铁路天窗的路径优化模型,认为合理利用天窗时间可以有效提升运输的灵活性和效率张珂一则提出了考虑风险和时间窗约束的冷链多式联运路径优化方案,强调了在冷链运输中,时间和风险管理的重要性。国内学者在集装箱多式联运路径优化方面的研究逐渐深入,涵盖了环境因素、时间窗、换装节点等多个维度,为后续研究提供了重要的理论基础和实践参考。

在铁路集装箱多式联运路径优化领域,国外的研究相对较为成熟,涵盖了多个方面的理论与实践。欧美国家在多式联运的基础设施建设上投入了大量资源,形成了较为完善的运输网络欧洲的“铁路货运网络计划”通过整合铁路、公路和水运,提升了集装箱运输的效率与灵活性。相关研究表明,合理的路径选择能够显著降低运输成本,提高运输时效。而且国外学者在路径优化算法的研究上取得了显著进展许多研究采用了先进的运筹学方法,针对多式联运的复杂性提出了多种优化模型这些模型不仅考虑了运输时间、成本,还引入了环境因素和安全性等指标,使得路径优化更加全面和科学。

随着信息技术的发展,智能化运输管理系统的应用也逐渐成为研究热点国外一些企业通过大数据分析和人工智能技术,实现了对运输路径的实时监控与动态调整,极大地提升了运输效率和服务质量。这些研究成果为我国铁路集装箱多式联运路径优化提供了宝贵的借鉴与启示。

内容

描述

数据

多式联运发展现状

多式联运量

2022年多式联运量达38.19亿吨,同比增长11.15%

集装箱铁水联运量

2022年达875万标箱,同比增长16.05%

铁路集装箱发送量

2023年达3323万TEU,同比增长5.1%

智慧港口行业市场规模

预计2023年突破40亿元

路径优化模型现状

多式联运路径优化模型

考虑铁路天窗、运输总时长、运输中转能力等为约束条件,以运输总成本最低为目标

遗传算法应用案例

长春至济南线路为例,采用遗传算法计算得到最优路径

运输成本降低效果

通过考虑铁路天窗等因素,优化模型提高了多式联运路径的合理性和优化方案的实用性

交通运输碳排放影响因素

碳排放总量

交通领域占全球温室气体排放量的15%

中国交通运输碳排放量

2021年达9.6亿吨左右,增长9倍

各类运输方式碳排放占比

公路运输占87%,水路运输和民航运输各占6%左右,铁路运输不到1%

公路运输单位能耗

公路运输单位能耗位居首位,铁路、水路和公路运输单位周转量能耗比约为1∶0.7∶5.2

政策与规划

碳达峰行动方案

《国务院关于印发2030年前碳达峰行动方案的通知》(国发〔2021〕23号)

交通运输体系发展规划

《国务院关于印发“十四五”现代综合交通运输体系发展规划的通知》(国发〔2021〕27号)

多式联运发展政策

《推进多式联运发展优化调整运输结构工作方案》《交通物流降本提质增效行动计划》等

近年来,多式联运在全球范围内得到了广泛的推广和应用,根据数据显示,2022年我国多式联运量达到了38.19亿吨,同比增长11.15%,其中集装箱铁水联运量更是实现了16.05%的显著增长。进入2023年,铁路集装箱发送量也继续保持增长态势,同比增长5.1%,达到了3323万TEU。这一增长趋势反映出多式联运在我国物流体系中的地位日益重要。

在路径优化模型方面,当前的研究已经充分考虑了铁路天窗、运输总时长、运输中转能力等多重因素,旨在实现运输总成本最低化。这种优化模型不仅提高了多式联运路径的合理性,也大大增强了优化方案的实用性。

1.6 研究方法

本研究在探讨如何优化基于铁路天窗的集装箱多式联运路径时,使用数学建模技术构建集装箱多式联运路径优化的数学模型该模型综合考虑了运输成本、时间效率、运输能力等多个方面,目标是在满足各项约束条件的前提下,找到最佳的运输路径。在建模过程中,详细分析了不同运输方式的特点并探讨了它们在不同情境下的优劣,从而确保了模型既全面又准确。

本研究主要使用了遗传算法因其强大的全局搜索能力和广泛的适应性,广泛应用于优化问题中。我们设计了合理的编码方式、适应度函数和遗传操作,使算法能够高效地在解空间中找到接近最优的解决方案。应用仿真测试来验证建立的模型和算法通过模拟真实的运输环境和需求,我们对比了不同算法在路径优化问题中的表现。仿真结果显示,我们提出的算法不仅能在较短的时间内找到满意的运输路径,而且在成本和时间效率方面都有所改善。

本研究综合运用了数学建模、算法设计和仿真验证等技术手段,为基于铁路天窗的集装箱多式联运路径优化问题提供了切实可行的解决方案。这些方法不仅丰富了路径优化理论的研究内容,也为实际运输过程中的决策提供了科学依据。

1.7 论文结构与框架

本论文《基于铁路天窗的集装箱多式联运路径优化》共分为六个主要部分,分别是绪论、相关概念及理论概述、集装箱多式联运路径优化模型构建、算法设计与实现、实验验证与结果分析,以及结论与展望

1.1论文结构图

1.8 论文创新点

本研究在最主要的创新点包括构建了新的路径优化模型、改进了算法设计,我们深入研究了集装箱多式联运的特点和需求,针对传统路径优化模型存在的不足,提出了全新的路径优化模型。通过引入铁路天窗的概念,本文进一步优化了模型,使得在铁路运输环节能够更高效地利用资源,减少运输过程中的等待和延误,从而提升了整体的运输效率。

本研究通过构建新的路径优化模型、改进算法设计,为集装箱多式联运的路径优化问题提供了有效的解决方案,对于提升物流效率、降低运输成本及推动绿色物流发展具有重要的实际意义[13]。

第二章 相关概念及理论概述

2.1 铁路天窗概念

铁路天窗,是指在铁路运输中,为进行维修、检查或其他必要作业而预留的一段时间,这段时间内该段铁路暂停运营[14]。在现代铁路运输系统中,随着列车运行速度和密度的增加,铁路设备和基础设施的负荷也在不断加大必须定期对铁路轨道、信号系统、供电设备等关键设施进行检查和维修。

铁路天窗的作用主要体现在以下几个方面:它提供了必要的时间窗口,让维修人员能够对铁路线路和设备进行全面的检查和维修,从而及时发现并处理潜在的安全隐患,确保铁路运输的可靠性。通过合理安排天窗时间,可以有效避免维修作业与列车运行之间的冲突,保障运输秩序的稳定。铁路天窗还有助于提高运输效率,因为在天窗期间进行的维修和更新可以确保线路和设备处于最佳状态,从而减少故障发生的可能性,提高列车的准点率和运行速度。

在实际运营中,铁路天窗的设置需要综合考虑多种因素,包括运输需求、设备状况、维修能力等。通常,天窗时间会被安排在运输需求相对较低的时间段,以减少对正常运输秩序的影响。天窗时间的长度也需要根据维修作业的实际需求来确定,既要确保维修工作的顺利完成,又要避免过长的停运时间对运输效率造成不利影响[15]。

2.2 多式联运概述

多式联运,指的是通过两种或多种运输方式组合完成的货物运输过程它融合了水路、公路、铁路、航空等多种运输方式,根据货物的特性和运输要求,灵活选择最优的运输组合,以提高运输效率,降低运输成本。在我国,多式联运已经成为现代物流体系的重要组成部分,对于提升物流行业的整体效率和服务质量具有重要意义。

通过优化运输组合,减少不必要的转运和换装环节,多式联运能够显著降低能源消耗和减少碳排放这对于实现我国碳达峰、碳中和的目标具有重要意义同时在推动我国绿色物流发展方面发挥了积极作用。

总体来看,多式联运在我国已经取得了显著的发展成果,并展现出广阔的市场前景。未来,随着技术的不断进步和政策的持续推动,多式联运将在我国物流行业中发挥更加重要的作用,为推动经济高质量发展和绿色转型做出更大贡献。

2.3 路径优化方法

路径优化是物流领域中的一个重要问题,其目标是找到从起点到终点的最有效路径,以降低成本和提高效率。在过去的几十年里,研究者们开发出了多种路径优化方法,以适应不同的物流场景和需求。

遗传算法作为一种启发式搜索算法,在路径优化问题中得到了广泛应用。该算法通过模拟生物进化过程中的自然选择和遗传学原理,来寻找问题的最优解。在路径优化中,遗传算法将每个可能的路径视为一个“个体”,并通过选择、交叉和变异等操作,逐步优化这些路径,直至找到最优或近似最优解。遗传算法的优点是能够处理复杂的非线性问题,并且在寻找全局最优解方面表现出色。然而,它也存在收敛速度慢和容易陷入局部最优解的缺点。

在实际应用中,选择哪种路径优化方法取决于具体的问题特征和需求对于大规模、复杂的路径优化问题,遗传算法可能更为合适;而对于需要精确的场景,则应优先考虑使用精确算法。通过不断改进和创新这些路径优化方法,可以更有效地解决物流运输中的实际问题,提升整个物流系统的性能和效率。

2.4 铁路天窗在路径优化中的应用

铁路天窗作为铁路运输组织中的一项重要制度,其实质是在列车运行图中预留的一段时间,用于线路维护、设备检查和更新等作业。在多式联运中,铁路天窗的合理设置与利用对于提高运输效率、确保运输安全具有至关重要的作用。

在集装箱多式联运路径优化中,铁路天窗的应用首先体现在运输时间的规划上通过精确计算天窗的开启时间和持续时间,可以合理安排集装箱的装卸作业,避免在天窗期间进行无效等待,从而缩短整体运输时间。体现在运输能力的保障上通过合理安排天窗时间,可以确保铁路运输线路的畅通无阻,提高线路的通过能力。铁路天窗的应用还有助于提升运输安全在天窗期间进行线路检查和维护,可以及时发现并处理潜在的安全隐患,确保运输过程的安全性。铁路天窗在集装箱多式联运路径优化中发挥着重要作用通过合理设置和利用铁路天窗,可以提高运输效率、保障运输能力并提升运输安全。在未来的多式联运发展中,应进一步研究和优化铁路天窗的应用策略,以适应日益增长的货物运输需求。

第三章 集装箱多式联运路径优化模型构建

3.1 路径优化问题定义

集装箱多式联运路径优化问题,是指在集装箱运输过程中,通过合理地选择运输方式和路径,以达到提高运输效率、降低运输成本的目的[16]。这一问题的核心在于,如何在复杂的交通网络中,为集装箱找到一条最优的运输路径。

首先是运输方式的选择,集装箱可以通过铁路、公路、水路等多种方式进行运输,每种方式的运输效率和成本都有所不同。其次是路径的选择,即使在同一种运输方式下,也存在多条可选的运输路径。还需考虑运输过程中的中转和换装环节,这些环节会对整体运输效率产生影响。

为了量化分析这一问题,本文需要构建相应的数学模型。在模型中,运输成本和运输时间作为主要的优化目标。运输成本包括各种运输方式的直接费用中转等间接费用;运输时间则反映了运输效率的高低。通过合理地设置目标函数,本文可以将这两个优化目标转化为数学形式,从而便于后续的求解和分析。

集装箱多式联运路径优化问题是一个复杂的系统工程问题,需要综合考虑多种因素。通过明确问题的定义和目标函数,本文可以为后续的模型构建和算法设计奠定坚实的基础。

3.2 路径优化模型的假设条件

在构建集装箱多式联运路径优化模型时,需要基于一些前提假设,这些假设为模型的建立提供了基础框架和约束条件。以下是我们为路径优化模型所列出的关键假设条件:

运输需求是已知的,并且相对稳定在一定时间段内,各起始点和目的地的货物运输量是可以预测的,不出现剧烈波动优化过程需要考虑的是在给定的运输需求下,最有效地利用运输资源。

每种运输方式都有其特定的运载能力和限制,这些限制直接影响到路径优化的决策。运输成本是可计算的,并且与运输距离、运输方式以及运输时间等因素相关[17]这一假设是为了确保在优化过程中可以综合考虑经济效益。转运时间和成本也是优化过程中必须考虑的因素[18]在多式联运中,不同运输方式之间的转运是不可避免的假设不同运输方式之间的中转成本相同。

这些假设条件共同构成了路径优化模型的基础,可以更加明确的定义问题并设计出有效的算法来求解,使得模型能够在给定的约束下,寻求最优的运输路径和方式组合[19]

假设各物流节点具体位置已知,给出如下假设。

1)忽略同一城市间运输枢纽之间的中转时间和在途成本;

2)两个物流节点之间的距离根据不同运输方式的实际距离适当取整;

3)货物在节点处的运输方式变换至多为一次,且不能在非节点处进行中转;  

4)在物流节点处的中转时间仅考虑集装箱装卸时间;

5)物流节点处对于集装箱的中转能力、承载能力有限制约束

3.3 路径优化模型的数学表达

路径优化模型是集装箱多式联运路径选择的核心部分,它利用数学模型来描述运输过程中的各种约束条件和目标函数。为了建立一个有效的路径优化模型,本文需要明确模型中的主要变量、参数以及目标函数。

本文定义模型中的主要变量:设G=(VE)为运输网络图,其中
V:节点集合,包括始发站、中转站和终点站
E:边集合,表示各站点之间的连接关系
设x为诀策变量,表示从节点i到节点j的运输量。d表示从节点i到节点j的运输距离,c表示单位运输量的成本,t表示从节点i到节点j的运输时间。
路径优化模型的目标是最小化总运输成本,同时满足一定的约束条件,总运输成本包括在途运输成本和节点中转成本。
1.在途运输成本
定义运输方式为公路、铁路和水运,设M=ro代表公路;M=ra代表铁路;设M=w代表水运,在途运输成本表示在该线路运输过程中,使用不同运输方式所产生的运输成本总和,该成本由两部分构成,根据每部分的费用计算来源,本文将其称为运输途长成本和运输基价成本。
17
下面,以弧段(i,i)为例,给出两部分成本的计算公式。从节点i到节点使用第 M种运输方式(M=ro,ra,w)的在途运输成本等于两节点间的运输途长成本和运输基价成本之和

2.节点中转成本

在本研究中,节点中转成本表示同运输方式在中转过程中产生额外的费用,为方便讨论,本文的研究中假设不同运输工具之间的中转成本相同,用表示节点中转成本的总和,用公式可表示为

式子右边表示途径的节点发生中转产生成本的总和,c"表示每个集装箱在节点i由运输方式k转换成运输方式1的中转成本,当=1,则会产生成本,RH,否则成本为0。
综上可得,总成本等于在途成本以,中转成本之和,即运输总成本为C+C,考虑运输总成本最小的路径优化问题,则铁路集装箱多式联运路径优化的标函数:

路径优化模型通过数学公式和参数设置,全面描述了集装箱多式联运路径选择中的目标函数。模型中的变量和参数反映了实际运输过程中面临的各种复杂情况,能够有效支持路径优化决策

3.4 模型的约束条件

路径优化模型中通常包含多个约束条件,这些约束条件对于保证模型的合理性和实际可操作性至关重要。

  1. 铁路天窗约束

考虑铁路天窗对路径优化的限制,货物应该在铁路天窗开启前或铁路天窗结束后允许到达站点,建立约束条件分别为:

通过加入代表铁路天窗时间的约束条件,可保证得的最优路径符合铁路运营时间的要求。增加这两个约束条件是对现有研究中未考虑铁路天窗时间对运输路径选择影响的一个改进

  1. 其他约束条件

上式表示保证运输全程存在完整通路,当等式右边等1,表示该点为运输末端,无出路,等式右边等于-1时表示该点为起点,无进路,等式右边等于 0 时表示该点运输流畅,有完整的进出路线。

(2)最多中转一次:

加号左边表示保证任意两个物流节点之间最多采一种运输方式进行运输

(3)每一弧段上只选一种运输方式:

采用第 M 种运输方式两个节点之间的弧段在最优运输路径上,则该项为 1,否则等于 0

(4)路径连续性约束:

(5)节点流量平衡约束:

根据以上分析,得到铁路集装箱多式联运路径优化模型如下:

第四章 算法设计与实现

4.1 遗传算法设计

遗传算法是一种模拟自然选择和遗传机制的搜索算法,它通过模拟生物进化过程中的选择、交叉和变异操作来寻找最优解。在集装箱多式联运路径优化中,遗传算法可以有效地处理复杂的组合优化问题,提高路径规划的效率和准确性。

遗传算法的设计主要包括以下几个步骤:初始化种群、适应度评价、选择操作、交叉操作和变异操作。在遗传算法中,初始种群通常由若干个随机生成的个体组成。这些个体代表了不同的路径方案,每条路径方案都是一个可行解。为了保证初始种群的多样性和覆盖率,可以通过均匀分布或正态分布等方式随机生成这些个体。适应度评价是衡量每个个体优劣的重要标准在路径优化问题中,适应度函数通常表示为路径长度或总运输成本。对于给定的路径方案,可以通过以下公式计算其适应度值:

通过上述公式,本文可以得到每个路径方案的适应度值。适应度值越小,表示路径方案越好。

选择操作的目的是从当前种群中挑选出适应度较高的个体,作为下一代的父代交叉操作目的是通过交换两个父代个体的部分基因来产生新的后代个体变异操作是为了增加种群的多样性,防止算法过早收敛到局部最优通常通过对个体的某些基因进行随机改变来实现。变异率的选择是一个关键参数,一般取值在0.01到0.1之间。

通过以上步骤,遗传算法可以在迭代过程中逐步逼近最优解。在每一代中,都会生成一组新的后代个体,这些后代个体经过适应度评价、选择、交叉和变异操作后,形成新一代的种群。这个过程会重复多次,直到满足停止条件为止。当连续几代中没有更好的适应度值出现时,可以认为算法已经收敛到最优解或接近最优解。

在实际应用中,遗传算法的性能受到多种因素的影响,包括初始种群的规模、交叉概率、变异概率以及迭代次数等。通过合理设置这些参数,可以提高遗传算法的求解效率和求解质量。

4.2 算法实现与验证

在这一部分,探讨遗传算法的具体实现过程,并进行初步验证以确保算法的有效性。遗传算法的实现依赖于编码、选择、交叉、变异等基本操作。编码阶段,本文使用二进制编码表示运输路径,每条路径由一系列基因组成,每个基因代表一条特定的运输线路。选择操作则通过轮盘赌选择法来执行,该方法根据个体适应度值的概率大小进行选择,适应度函数定义为路径总成本减去路径效率得分。

交叉操作采用了单点交叉的方式,在两个父代之间随机选择一个交叉点,交换交叉点两边的基因片段生成子代。变异操作引入了随机扰动,以避免算法陷入局部最优,变异概率设定为0.01,即每个基因以0.01的概率发生变异。

为本文选取了一个具体的案例进行分析,该案例是一个包含10个节点的运输网络。通过应用上述算法,本文得到了一组优化后的路径方案,相较于传统的运输路线,优化后的方案不仅缩短了运输时间,也减少了运输成本。通过案例分析,本文可以看到路径优化模型在实际应用中的有效性和实用性

第五章 实验验证与结果分析

5.1 实验设计

在实验设计阶段,本文着重考虑了实验环境和数据来源两个方面,以确保实验结果的准确性和可靠性。

针对实验环境,本文选择了具备高性能计算能力的服务器作为实验平台,以确保大规模数据处理的效率和稳定性。服务器配备了多核处理器和大容量内存,能够满足复杂算法的运行需求。本文还采用了专业的数据分析软件,以支持数据预处理、模型求解和结果可视化等一系列操作。

在数据来源方面,本文主要依托公开的物流数据和铁路运输数据。这些数据集包括货物类型、运输距离、运输时间等关键信息。为了确保数据的真实性和有效性,本文对数据进行了严格的清洗和预处理工作,剔除了异常值和重复记录。

5.2 数据收集与处理

本论文选取的是山海关到青岛的集装箱多式联运路径优化问题,山海关是东三省的起点,具有良好的地理优势,青岛地处胶东经济圈,以40英尺的铁路集装箱为载体,考虑环境等诸多因素,实现运输方式之间的转换。

通过铁路95306可以获取铁路运价的数据,在中国公路物流运价指数表中可以查找公路运价,水路运价是通过黄金水道中的物流运价表查找获取,对铁路、公路、水路各物流节点间的运输距离,通过铁路路网、谷歌地图和某企业航道图的信息搜集,得到相关数据;根据铁路运行图进行汇集整理,得到铁路天窗作业时间。

(1)在途运输成本

本文选取10个物流节点进行研究分析,一次编号为a-j,其中山海关为a,唐山为b,天津为c,沧州为d,大连为e,滨州为f,潍坊为g,莱州为h,烟台为i,青岛为j。

计算运输途长成本时,需要两个节点之间的运距和两节点之间运输方式所对应的运价数据;在计算运输基价成本时,需要不同运输方式对应的运输基价数据。通过调查,得到不同运输方式对每个集装箱的单位运距费用和运输基价费用,具体如下表5.1所示。

运输方式

单位运距费用(元/箱公里)

运输基价费用(元/箱)

铁路运输

3.357

532

公路运输

8.5

25

水路运输

0

1000

5.1不同运输方式单位运距费用与运输基价费用

不同运输方式在节点之间的运p输距离不同,运输距离影响在途运输成本。通过数据搜集,获得各节点之间的运输距离见下表5.2。

区间

运输距离

公路

铁路

水运

a-b

221

162

-

b-c

153

148

-

b-d

275

316

-

c-d

117

109

-

c-f

221

310

-

h-i

91

89

-

i-j

224

281

-

g-j

160

102

-

c-e

-

-

400

e-i

1376

-

161

e-j

-

-

550

5.2节点间运输距离

将表5.1和表5.2的数据带入公式:

则可以计算出节点间采用的某种运输方式的在途成本。

以一个40英尺的集装箱从山海关到唐山为例,两者间公路运输距离为221km,铁路运输距离为162km,没有水路运输。则计算结果如下:

  1. 节点中转成本

在运输过程中,若需要发生运输方式的转变,借助另一种交通工具来协助进行运输,则本研究中假定:在中转节点处不需要其他运输方式协助两种运输方式的转换,即将同城市间的铁路节点、公路节点及水路节点视为同一节点进行研究。在节点中转成本计算时,只考虑不同运输方式转换带来的成本。

在中转过程中,不同运输方式间的每个集装箱的中转费用如表 4.3 所示。

运输方式

中转费用

公路

铁路

水路

公路

0

25.26

30.35

铁路

25.26

0

46.88

水路

30.35

46.88

0

5.3不同运输方式的中转费用

从5.3的图表中可以看出,公转铁运输的每个集装箱需要中转费用25.36元,公转水运输的每个集装箱需要30.35元,铁转水运输的每个集装箱需要46.88元。那么可以得到结论,公铁之间的转运成本最低。

  1. 约束条件--各铁路站点的铁路天窗时间

本文构建的模型中包含对铁路货运节点的铁路天窗时间限制, 因此对所有办理装车业务的站点,需要搜集各节点铁路天窗的数据。

根据铁路货运的实际运输条件,每个铁路站点在铁路天窗时间都要停办业务。因此本论文在研究铁路集装箱多式联运问题时,在铁路允许运行时间方面做了优化改进,即将每个铁路货运节点的实际运行铁路天窗考虑在约束条件以内(停运时间简称为铁路天窗,铁路天窗是指列车运行图中不铺画列车运行线或调整、抽减列车运行,为营业线施工和维修作业预留的时间)。各线路天窗的时间和位置在编排列车运行图时方可确定,本文中天窗时间为冬季调图期天窗时间,所有节点的铁路运输天窗限制如表 5.4 所示。

运行路段

停运起始时间

停运终止时间

运行路段

停运

起始

时间

停运

终止

时间

山海关-上行

22:40

3:40

山海关-下行

22:30

1:30

唐山-上行

0:50

5:50

唐山-下行

0:30

3:30

天津-上行

23:10

3:10

天津-下行

23:10

0:10

沧州-上行

22:50

1:50

沧州-下行

0:20

1:20

大连-上行

1:00

3:00

大连-下行

1:10

3:10

潍坊-上行

0:40

3:40

潍坊-下行

1:00

4:00

莱西-上行

0:50

3:50

莱西-下行

2:00

6:00

烟台-上行

23:40

2:30

烟台-下行

1:50

5:50

青岛-上行

22:30

1:30

青岛-下行

1:10

5:10

5.4节点的铁路运输天窗限制时间

5.3 模型求解

本论文以各个站点的铁路天窗约束、总运行时间的约束为约束条件,以运输总成本最小为目标,采用遗传算法,通过 MATLAB 2016a对代码进行编写,对山海关至青岛线路间的铁路集装箱多式联运路径优化问题进行计算。

对该线路,从山海关出发到青岛路段中选取 10 个物流节点,为防止过早收敛使得结果陷入局部最优,本文设定种群大小为 2000,交叉概率设置为 0.8,变异概率设置为 0.1,迭代次数设置为 50000,通过反复实验验证,迭代曲线最终呈现为直线状态,即达到最优解。

6.研究与展望

6.1 研究结论总结

本研究通过对基于铁路天窗的集装箱多式联运路径优化问题进行深入探讨,得出了一系列重要结论。以下是对本研究主要发现和结论的总结。

在路径优化模型的有效性方面,本研究构建了考虑铁路天窗影响的集装箱多式联运路径优化模型。通过实际案例的应用与验证,该模型能够显著提高运输路径的规划效率,减少不必要的转运和等待时间。模型在考虑多种运输方式衔接的也兼顾了运输成本和运输时间的平衡,从而实现了整体运输效率的提升。

在算法的可行性方面,本研究设计了遗传算法求解策略,并对种算法进行了详细的性能评估[21]。评估结果表明,遗传算法在处理大规模问题时具有较快的收敛速度和较好的全局搜索能力,适合用于求解复杂的路径优化问题[22]。通过对比实验,本研究发现遗传算法在求解实际问题时能够在较短的时间内给出近似最优解,从而验证了其在实际应用中的可行性[24]。

本研究通过构建有效的路径优化模型和设计可行的求解算法,为基于铁路天窗的集装箱多式联运路径优化问题提供了有效的解决方案。这些结论不仅对于提升我国多式联运的运输效率和经济效益具有重要意义,同时也为相关领域的研究和实践提供了有益的参考和借鉴。

6.2 未来研究方向

随着全球贸易的不断发展,集装箱多式联运的重要性日益凸显。本研究虽然在铁路天窗的基础上对集装箱多式联运路径进行了优化,但仍有许多值得进一步探索的方向和潜在的改进措施。

考虑到当前研究中,本文主要关注了运输路径的优化,而运输时间的优化同样关键。未来研究可以进一步探讨如何在保证运输成本最低的实现运输时间的最小化。例如,通过建立时间-成本双目标优化模型,可以更全面地满足客户需求,提升物流服务质量。

在环境可持续性方面,本研究虽然涉及了运输过程中的碳排放问题,但并未深入探讨如何通过优化路径选择来进一步减少碳排放。未来研究可以集中在绿色路径规划上,利用先进的数据分析技术,如大数据分析、云计算等,实时监测和评估不同路径的环境影响,从而选择更加环保的运输路线。

随着物联网(IoT)和人工智能(AI)技术的不断进步,智能化运输管理系统的开发和应用将成为可能。未来研究可以探索如何利用这些先进技术来自动调整运输路径,以适应不断变化的运输需求和外部环境,如天气变化、交通拥堵等。这样的系统不仅能够提高运输效率,还能有效应对突发事件,确保运输过程的安全性和可靠性。

基于铁路天窗的集装箱多式联运路径优化研究在未来有着广阔的研究空间。通过进一步探索运输时间与成本的平衡、绿色路径规划以及智能化运输管理系统的开发,本文可以期待集装箱多式联运在未来能够更加高效、环保和智能化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值