https://blog.csdn.net/chenbang110/article/details/7604975
https://blog.csdn.net/tianguiyuyu/article/details/80697223
理论
一般情况将K折交叉验证用于模型调优,找到使得模型泛化性能最优的超参值。,找到后,在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数据集A随机分为k个包,每次将其中一个包作为测试集,剩下k-1个包作为训练集进行训练。
交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.
matlab代码实现
data=double(xtrain');
label=double(ytrain'); %要求数据集每一行代表一个样本 ;label每行为标签
[M,N]=size(data); % M:总样本量; N:一个样本的元素总数
indices=crossvalind('Kfold',data(1:M,N),5); %进行随机分包
for k=1:5 %交叉验证k=10,10个包轮流作为测试集
test = (indices == k); %获得test集元素在数据