信息检索(四)-- 文本分析及自动标引(Part 1)

1.0 Ranked retrieval

现在,我们只能用boolean的方法进行查找。但是,不是每个用户都会写布尔查询,而且布尔查询的结果要么太多(OR),要么太少(AND)

1.1 Ranked retrieval models

我们希望,可以用Free text 进行查询,而且查询的结果按照相关度排序。

Term的自动抽取及其加权
Zipf’s law: If the terms in a collection are ranked ® by their frequency (frf_rfr), they roughly fit the relation r∗fr=Cr * f_r =Crfr=C Different collections have different constants C, but in English text, C tends to be about N / 10, where N is the number of words in the collection. pr=fr/Np_r = f_r / Npr=fr/N is the probability that a randomly chosen term (with frequency f_r) will have rank r.
r∗pr=Ar * p_r = A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值