目录
3.1.1 滑动窗口注意力 (Sliding Window Attention)
3.1.2 空洞滑窗注意力 (Dilated Sliding Window Attention)
3.1.3 全局注意力 (Global Attention)
3.3.1 原生稀疏注意力 (Native Sparse Attention, NSA)
一、引言:长文本处理的计算瓶颈
随着大语言模型 (LLM) 的不断发展,处理长文本的能力已成为衡量模型性能的关键指标。现代 LLM 如 DeepSeek-R1、GPT-4 等已能够处理高达 128k 甚至更长的上下文,这使得它们能够应用于长篇文档分析、长对话理解、代码库处理等复杂场景。然而,传统 Transformer 架构中的自注意力机制因其二次计算复杂度(O (n²))和巨大的内存需求,成为了长文本处理的主要瓶颈。
在处理长文本时,标准注意力机制的计算成本变得极其高昂。当序列长度达到 64k 时,注意力计算可能占据总延迟的 70-80%。例如,对于一个长度为 64k 的文本序列,传统注意力机制需要计算超过 40 亿次的查询 - 键交互,这在计算和内存资源上都是不可行的。
稀疏注意力机制 (Sparse Attention) 通过选择性地计算关键的查询 - 键对,在保持模型性能的同时显著降低计算复杂度,成为解决长文本处理问题的关键技术路径。2025 年,稀疏注意力领域已经涌现出多种创新方法,包括原生稀疏注意力 (NSA)、MoBA、MagicPIG 等,这些方法在计算效率和模型性能之间取得了不同程度的平衡。
本文将全面介绍长文本大模型中的稀疏注意力机制,涵盖其核心原理、主流变体、实现优化及应用案例,为理解和应用这一关键技术提供系统性指导。
二、稀疏注意力机制的理论基础
2.1 标准注意力机制回顾
在深入探讨稀疏注意力之前,我们需要回顾标准自注意力机制的基本原理。标准自注意力机制将输入序列转换为查询 (Q)、键 (K) 和值 (V) 三个矩阵,然后计算注意力权重矩阵 A:
其中,表示第 i 个查询向量,
是注意力头的维度。输出结果
通过将注意力权重与值矩阵相乘得到:
标准注意力机制的计算复杂度为 O (n²),这在处理长序列时变得不可行。
2.2 稀疏注意力的基本思想
稀疏注意力的核心思想是引入一个稀疏掩码矩阵 M ∈ ,使得注意力计算仅在掩码为 1 的位置上进行。稀疏注意力的计算可以表示为:
其中,⊙表示元素级乘法,M 是稀疏掩码矩阵,决定了哪些位置的注意力计算会被执行。
通过设计适当的稀疏模式,稀疏注意力可以将计算复杂度降低到 O (n・k),其中 k 是每个查询关注的平均 token 数,且 k ≪ n。这种方法显著减少了计算量和内存需求,使得处理长文本成为可能。
2.3 稀疏注意力的关键指标
评估稀疏注意力机制的关键指标包括:
稀疏度 (Sparsity):定义为未计算的注意力单元(如查询 - 键交互)数量与密集注意力中总单元数量的比率。例如,稀疏度 = 0.9 意味着 90% 的交互被跳过,压缩比为 10 倍。
压缩比 (Compression Ratio):定义为 1 - 稀疏度。例如,压缩比 = 10 表示计算量减少到原来的 1/10。
召回率 (Recall):衡量稀疏注意力保留的关键信息比例。高召回率表示稀疏注意力能够有效保留重要的注意力交互。
吞吐量提升 (Throughput Improvement):衡量稀疏注意力机制在实际运行中带来的速度提升。例如,NSA 在解码阶段速度提升 11.6 倍,前向传播提升 9 倍,反向传播提升 6 倍。
三、主流稀疏注意力机制详解
3.1 固定模式稀疏注意力
固定模式稀疏注意力是指使用预定义的稀疏模式作为掩码矩阵,这些模式在模型训练和推理过程中保持不变。这种方法的优点是实现简单,计算高效;缺点是缺乏灵活性,可能无法适应不同任务和数据的需求。
3.1.1 滑动窗口注意力 (Sliding Window Attention)
滑动窗口注意力是最常见的固定模式稀疏注意力之一,它允许每个查询仅关注其前面或周围的一个固定大小窗口内的键。具体来说,对于位置 i 的查询,它只能关注位置 i-w, i-w+1, ..., i+w 的键,其中 w 是窗口大小。
数学表达:计算过程遵循标准注意力公式,但仅应用于本地窗口范围:
计算复杂度分析:处理单个 token 的计算成本为 O (w),这是一个与整体序列长度 n 无关的常数。整个序列的总计算成本为 O (n・w),相比标准的 O (n²) 复杂度实现了线性化的显著改进。
应用案例:Longformer 使用滑动窗口注意力处理长文档,将窗口大小设置为 512,使计算复杂度从 O (n²) 降至 O (n・512),从而能够处理长度为 4096 的文本序列。
3.1.2 空洞滑窗注意力 (Dilated Sliding Window Attention)
空洞滑窗注意力是在滑动窗口注意力的基础上,通过引入空洞因子 (dilation factor) 来扩大感知野,而不增加计算量。空洞因子 d 使得窗口内关注点的间隔扩大,例如 d=2 时窗口覆盖范围为 w×d,而计算量仍保持 O (nw)。
实现机制:该机制通过在滑动窗口中留出间隔,使模型可以关注更远的 token,而不增加窗口的计算量。具体来说,对于位置 i 的查询,它关注的键位置为 i, i+d, i+2d, ..., i+(k-1) d,其中 k 是窗口内的 token 数量。
数学表达:
计算效率分析:空洞滑窗注意力在不增加计算复杂度的情况下,扩大了每个查询的感知野,有助于模型捕捉更长距离的依赖关系。例如,当窗口大小 w=512,空洞因子 d=2 时,感知野扩大到 1024,而计算量仍保持 O (n・512)。
应用案例:Longformer 使用空洞滑窗注意力作为其核心组件之一,通过设置不同的空洞因子,在不同层上实现多尺度的上下文建模。
3.1.3 全局注意力 (Global Attention)
全局注意力机制指定某些特定的 token(称为全局 token)可以关注所有其他 token,而其他 token 只能关注这些全局 token 和 / 或其附近的 token。
实现机制:在全局注意力中,选择索引的子集 G(具有 g=|G|),使得对于所有 i∈G,有 A (i,:)=1 且 A (:,i)=1。这意味着全局 token 可以与所有其他 token 进行交互,而其他 token 只能与全局 token 和 / 或其附近的 token 交互。
数学表达:
对于全局 token i∈G:
对于非全局 token j∉G:
应用案例:Longformer 在下游任务微调中加入了针对部分 token 的全局注意力。例如,在 QA 任务中,问题 token 可以被设置为全局 token,以便它们能够与所有上下文 token 进行交互。
3.1.4 BigBird 稀疏注意力
BigBird 是一种结合了多种稀疏模式的混合注意力机制,旨在将二次依赖性降低到线性。BigBird 的注意力模式包括随机注意力、滑动窗口注意力和全局注意力。
实现机制:BigBird 的最终注意力机制具有三个属性:
- 每个 query 包含 r 个随机 key
- 每个 query 包含其位置左侧的 w/2 个字符和右侧的 w/2 个字符
- 每个 query 包含 g 个全局字符(全局字符可以来自现有字符或额外添加的字符)
数学表达:
其中,随机注意力矩阵,
是滑动窗口注意力矩阵,
是全局注意力矩阵,α、β、γ 是控制各部分贡献的权重。
计算复杂度分析:BigBird 的计算复杂度为 O (n (r + w + g)),当 r、w 和 g 都是常数时,复杂度为 O (n),显著低于标准注意力的 O (n²)。
应用案例:BigBird 可以处理长度达到之前使用类似硬件可能处理的 8 倍的序列,在长文档理解和长文本生成任务中表现出色。
3.2 动态稀疏注意力
动态稀疏注意力是指根据输入内容动态确定稀疏模式的注意力机制。这种方法的优点是可以适应不同的输入和任务需求;缺点是计算复杂度较高,需要额外的计算资源来确定稀疏模式。
3.2.1 基于重要性的动态选择
基于重要性的动态选择方法根据查询与键之间的相似度或其他重要性度量,动态选择每个查询需要关注的键。这类方法的核心思想是,注意力机制中的注意力权重通常呈现出显著的稀疏性,即少数键对最终结果的贡献远大于其他键。
实现机制:这类方法通常包括以下步骤:
- 计算每个键的重要性分数
- 根据重要性分数选择 Top-K 个键
- 仅对选中的键执行注意力计算
数学表达:
其中,是重要性分数向量,
是选中的 Top-K 个键的索引集合。
应用案例:
- MInference 方法计算每个键的重要性分数,然后选择分数最高的前 k 个键进行注意力计算。
- Quest 方法基于查询感知稀疏性,根据每个查询的特性动态选择关键键值对,在保持高准确率的同时,显著减少了计算量。
3.2.2 聚类选择
聚类选择方法将键分成多个聚类,然后为每个查询选择最相关的聚类进行注意力计算。这类方法的假设是,相似的键可能对查询有相似的贡献,可以被分组处理。
实现机制:
- 对键进行聚类,形成多个聚类中心
- 计算查询与各聚类中心的相似度
- 选择最相关的聚类进行注意力计算
数学表达:
其中,C 是聚类中心集合,S 是查询与聚类中心的相似度向量,I 是选中的聚类索引集合。
计算效率分析:聚类选择方法的计算复杂度取决于聚类的数量和每个聚类的大小。理想情况下,这种方法可以将计算复杂度降低到 O (n・k・c),其中 k 是选中的聚类数量,c 是每个聚类的平均大小。
应用案例:
- ClusterKV 通过首先聚类键,然后根据查询 - 聚类相似性选择最相关的集群来计算注意力,从而实现稀疏性。
- 在实践中,聚类选择方法在处理大规模数据集时表现出色,能够在保持较高准确率的同时显著减少计算量。
3.2.3 基于哈希的选择
基于哈希的选择方法使用哈希函数将查询和键映射到哈希桶中,然后仅在同一哈希桶内进行注意力计算。这类方法的核心思想是,相似的向量更可能被映射到同一个哈希桶中,因此可以通过哈希来高效地找到潜在相关的键。
实现机制:
- 使用哈希函数将查询和键映射到哈希桶中
- 仅在同一哈希桶内进行注意力计算
- 为了提高准确性,可以使用多重哈希和交集操作
数学表达:
其中, 和
是查询和键的哈希值,B 是哈希桶的掩码矩阵。
计算效率分析:基于哈希的选择方法的计算复杂度通常为 O (n・log n),这比标准注意力的 O (n²) 显著降低。这种方法的效率取决于哈希函数的质量和哈希桶的数量。
应用案例:
- Reformer 模型使用局部敏感哈希 (LSH) 注意力机制,将相似的单词哈希到相同的桶中,只计算桶内单词的注意力得分,将计算复杂度降低到 O (n log n)。
- MagicPIG 使用 LSH 采样技术,将注意力计算卸载到 CPU 上,实现了 1.76-4.99 倍的解码吞吐量提升。
3.3 基于硬件优化的稀疏注意力
基于硬件优化的稀疏注意力机制特别设计以适应现代硬件架构(如 GPU、TPU)的特性,旨在将理论上的计算减少转化为实际的速度提升。
3.3.1 原生稀疏注意力 (Native Sparse Attention, NSA)
原生稀疏注意力 (NSA) 是 DeepSeek 团队提出的一种新型稀疏注意力机制,旨在通过算法创新与硬件对齐优化,实现高效的长上下文建模。
核心设计理念:NSA 采用动态分层稀疏策略,通过三条并行的注意力分支协同工作:
- 压缩注意力 (Compressed Attention):负责捕捉粗粒度的全局信息模式
- 选择性注意力 (Selected Attention):专注于序列中最重要的词块
- 滑动注意力 (Sliding Attention):负责获取局部的上下文信息,确保细节不丢失
实现机制:
- 滑动窗口注意力分支:采用最直接的实现方式,将注意力计算限制在最近的 w=512 个键值对范围内,并在此局部窗口上执行标准的注意力计算。
- 压缩注意力分支:
- 将键和值组织成连续的块
- 使用 MLP 对每个块进行压缩,生成粗粒度的摘要表示
- 在压缩后的摘要上执行注意力计算,捕捉全局信息
- 选择性注意力分支:
-
- 使用从压缩注意力获得的注意力分数来指导块选择
-
- 选择最重要的块进行详细的注意力计算
-
- 确保关键信息不被遗漏
- 门控输出融合机制:
-
- 使用小型 MLP 为每个分支生成门控分数
-
- 通过加权求和融合三个分支的输出
-
- 自适应调整各分支的贡献
硬件感知内核设计:
- 组中心化加载机制:一次性加载单个 token 位置的组内所有查询头,消除冗余的内存传输操作。
- 分块处理与 SRAM 优化:将大规模注意力问题分解为能够适配 SRAM 容量的小规模 "分块",最大化数据重用效率。
- 融合操作与在线 Softmax:将多个计算步骤合并为单一的连续操作,减少调度开销。
数学表达:
其中,、
和
分别表示滑动窗口、压缩和选择性注意力的输出,g 是门控权重向量。
性能表现:
- 在处理 64k 长度序列时,NSA 在解码、前向传播和反向传播的全生命周期中都展现出惊人的速度优势:解码阶段速度提升 11.6 倍,前向传播提升 9 倍,反向传播提升 6 倍。
- 在 LongBench 基准测试中,NSA 取得了 0.469 的平均分,不仅超越了全注意力基线(+0.032),而且大幅领先其他稀疏注意力方法。
- 在需要复杂推理的多跳问答任务上,NSA 相比全注意力分别提升了 0.087(HPQ)和 0.051(2Wiki);在代码理解任务(LCC)上提升了 0.069;在段落检索任务(PassR-en)上提升了 0.075。
应用案例:
- NSA 已被应用于 DeepSeek-R1 模型中,显著提升了其处理长文本的能力。
- 该技术在 2025 年 ACL(国际计算语言学大会)上获得最佳论文奖,证明了其在学术界和工业界的重要性。
3.3.2 混合块注意力 (MoBA)
混合块注意力 (MoBA) 是由 Kimi 团队提出的一种新型稀疏注意力机制,该方法将 KV 进行分块,其中 K 块参与到稀疏性的计算中,用于进行路由,V 的分块配合 K 的分块,提高训练和推理的效率。
核心设计理念:
- MoBA 将 KV 进行分块,其中 K 块参与到稀疏性的计算中,用于进行路由
- V 的分块配合 K 的分块,提高训练和推理的效率
- 采用相似度分数 + topk 的方式来代替 MoE 中的 gating 来进行路由
实现机制:
- 块划分:将序列划分为大小为 B 的块,每个块内的 token 只能与同一块内的其他 token 进行注意力计算。
- 块内平均:对每个块内的键向量求平均,得到块级别的键表示。
- 相似度计算:计算查询与各块平均键向量的相似度分数。
- Top-K 块选择:根据相似度分数选择 Top-K 个块进行详细的注意力计算。
数学表达:
其中,表示第 i 个块的索引范围,
是第 i 个块的平均键向量,
是查询与第 i 个块的相似度分数,
是选中的块索引集合。
训练策略:
- MoBA 的训练采用逐渐增加序列长度的方式进行,从短序列开始,逐步增加到目标长度。
- 在训练过程中,为了确保训练稳定性,MoBA 在最后几层加上了全注意力。
性能表现:
- MoBA 在多个长文本任务上表现出色,特别是在需要长距离依赖建模的任务中。
- 该方法在 2025 年与 NSA 同时发布,成为稀疏注意力领域的重要进展之一。
应用案例:
- MoBA 已被应用于多个开源大模型中,如 LLama3.1-8B,支持处理高达 1M 长度的上下文。
- 该技术特别适用于需要处理超长文本的场景,如代码库分析、长篇文档理解等。
3.3.3 MagicPIG
MagicPIG 是由 CMU、华盛顿大学、Meta AI 的研究人员提出的一种新型稀疏注意力机制,该方法通过在 CPU 上使用 LSH(局部敏感哈希)采样技术,有效克服了 GPU 内存容量限制的问题。
核心设计理念:
- 基于采样 / 估计而非搜索,提升推理质量
- 将解码阶段注意力模块的计算和哈希表卸载到 CPU 上
- 探索异构计算的可能性,提升吞吐量,降低实际模型部署成本
实现机制:
- 哈希编码:对查询向量进行哈希编码,生成哈希码。
- 哈希表查询:使用哈希码查询哈希表,获取候选键值对。
- 内积计算:计算查询与采样键的内积。
- 碰撞概率计算:估计每个哈希函数的碰撞概率。
- 采样概率计算:根据碰撞概率计算采样概率。
- 注意力输出估计:使用采样的键值对和估计的概率计算注意力输出。
数学表达:
其中,是查询的哈希码,S是采样的索引集合,
和
是采样的键和值,
和
是静态缓存的键和值,p是碰撞概率,u是采样概率,
是注意力输出估计。
系统设计:
- 任务分区:将模型参数计算放在 GPU 上,注意力计算和哈希表存储放在 CPU 上。
- 随机投影:在 GPU 上生成随机投影器,用于哈希编码。
- 哈希表管理:在 CPU 上管理大型哈希表,避免 GPU 显存限制。
性能表现:
- 与仅使用 GPU 的注意力机制相比,MagicPIG 在各种情况下提高了 1.76-4.99 倍的解码吞吐量。
- 在检索和推理任务中实现了更高的下游准确率,优于 Quest 等现有技术。
- 在 Llama-3.1-8B-Instruct 模型上,处理 96k 上下文时,MagicPIG 的解码延迟仅为 54ms。
应用案例:
- MagicPIG 特别适用于长上下文场景,如长篇对话、长文档生成等。
- 该技术在 2024 年 10 月发布后,已被多个开源项目采用,成为处理超长文本的重要工具之一。
3.4 KV 缓存优化的稀疏注意力
KV 缓存优化是稀疏注意力机制中的一个重要方向,旨在减少 KV 缓存的内存占用,提高推理效率。这类方法主要关注如何在生成新 token 时,有效管理和更新 KV 缓存,避免存储不必要的信息。
3.4.1 H2O
H2O 是一种基于 KV 缓存驱逐的稀疏注意力机制,该方法通过识别和保留重要的 token,显著减少了 KV 缓存的大小,同时保持了较高的模型性能。
核心设计理念:
- 识别和保留 KV 缓存中的重要 token
- 将 KV 缓存驱逐表述为一个动态的子模块问题
- 提供理论保证,确保驱逐策略的有效性
实现机制:
- 注意力权重分析:计算当前查询与所有键的注意力权重
- 重要性评分:根据注意力权重为每个 token 分配重要性分数
- 缓存驱逐:根据重要性分数决定哪些 token 需要保留,哪些可以被驱逐
数学表达:
其中,A 是注意力权重矩阵,S 是重要性分数向量,B 是缓存预算,和
是更新后的键和值缓存。
性能表现:
- H2O 通过该方法,KV 缓存大小减少了 5 倍,几乎没有精度损失,并且吞吐量提升了高达 29 倍。
- 在 OPT-6.7B 和 OPT-30B 模型上,H2O 的吞吐量比三个领先的推理系统(DeepSpeed Zero-Inference、Hugging Face Accelerate 和 FlexGen)分别提高了 29 倍、29 倍和 3 倍。
- 在相同的批量大小下,H2O 可以将延迟降低多达 1.9 倍。
应用案例:
- H2O 特别适用于长文本生成任务,如对话系统和故事写作等。
- 该技术在 2023 年发布后,已被多个开源项目采用,成为优化 LLM 推理的重要工具之一。
3.4.2 Quest
Quest 是一种查询感知的稀疏注意力机制,由 MIT 的研究人员提出。该方法基于 Transformer 层中普遍存在的高度稀疏性,通过动态选择关键的键值对,显著提高了长上下文 LLM 推理的效率。
核心设计理念:
- 利用 Transformer 层中普遍存在的高度稀疏性
- 基于查询感知的稀疏性,动态选择关键的键值对
- 无需额外的训练或微调,直接应用于预训练模型
实现机制:
- 注意力权重分析:计算当前查询与所有键的注意力权重
- 阈值设置:根据注意力权重的分布设置阈值
- 稀疏掩码生成:仅保留高于阈值的注意力权重,其余设置为 0
数学表达:
其中,A 是注意力权重矩阵,T 是阈值,M 是稀疏掩码矩阵,是稀疏化后的注意力权重矩阵,O 是输出结果。
性能表现:
- Quest 在多个长文本任务中表现出色,特别是在检索和推理任务中。
- 该方法在 2024 年发布后,成为处理长上下文的重要工具之一,特别是在需要高精度的场景中。
应用案例:
- Quest 适用于各种需要处理长文本的场景,如信息检索、问答系统、文本生成等。
- 在实际应用中,Quest 已被应用于多个开源大模型,如 Llama-3.1-8B,支持处理高达 128k 长度的上下文。
3.4.3 AdaSpa
AdaSpa 是一种新颖的稀疏注意力加速框架,由字节跳动和北京大学的研究人员提出。该方法结合了动态模式和在线精确搜索功能,旨在通过 DiTs 加速长视频生成。
核心设计理念:
- 动态块化范式:根据输入内容动态调整块大小和位置
- 在线精确搜索:确保在稀疏计算的同时不丢失重要信息
- 头自适应分层块稀疏注意力:根据每个头的重要性调整稀疏度
实现机制:
- 块化 Sparse 注意力定义:将长度维度 L 划分为 B 个块,定义块级 Sparse 模式
- 最优 Sparse 索引:基于注意力权重总和选择最重要的块
- 融合 LSE - 缓存在线搜索:使用融合在线搜索和缓存的 LSE 值提高搜索效率
- 头自适应分层块 Sparse 注意力:根据每个头的召回率调整稀疏度
数学表达:
其中,是块级 Sparse 模式,
是足够大的负偏置,
是每个块的注意力权重总和,
是选中的块索引集合。
性能表现:
- AdaSpa 在长视频生成任务中表现出色,在 HunyuanVideo 和 CogVideoX1.5-5B 模型上实现了高达 1.78 倍的速度提升,同时保持了生成视频的高保真度。
- 该方法在 ICCV 2025 上被接受,证明了其在计算机视觉领域的重要性。
应用案例:
- AdaSpa 特别适用于长视频生成和处理,如视频编辑、动画生成等。
- 该技术也可以应用于其他长序列任务,如音频处理、时间序列分析等。
四、稀疏注意力机制的实现与优化
4.1 稀疏注意力的通用实现框架
稀疏注意力的实现通常基于现有的深度学习框架,如 PyTorch 或 TensorFlow,通过自定义注意力模块来实现。以下是稀疏注意力的一般实现步骤:
- 输入处理:将输入序列通过线性层转换为查询、键和值矩阵:
Q = X @ WQ
K = X @ WK
V = X @ WV
其中,WQ、WK、WV 是投影矩阵,X 是输入序列。
稀疏模式确定:根据所选的稀疏注意力变体,确定每个查询需要关注的键的位置。这可以通过以下步骤实现:
mask = create_sparse_mask(Q, K)
其中,create_sparse_mask 函数根据具体的稀疏策略生成掩码矩阵。
注意力计算:仅在确定的位置上计算注意力权重,并对值进行加权求和:
A = torch.softmax(Q @ (K * mask) / sqrt(d_head), dim=-1)
O = A @ V
其中,mask 是稀疏掩码矩阵,确保只有选中的位置参与计算。
输出处理:将注意力输出通过线性层转换为最终输出:
output = O @ WO
其中,WO 是输出投影矩阵。
在实现过程中,需要注意以下几点:
- 高效的索引操作:稀疏注意力需要高效的索引操作来选择需要关注的键,这通常可以通过 PyTorch 的 index_select 或 gather 函数实现。
- 内存管理:稀疏注意力可能需要存储额外的掩码或索引信息,需要合理管理内存以避免内存溢出。
- 并行计算:尽可能利用 GPU 的并行计算能力,例如通过块级处理或多头并行计算。
4.2 硬件对齐的稀疏注意力优化
为了充分发挥稀疏注意力的效率优势,需要进行硬件对齐的优化。例如,NSA 采用了硬件对齐的算法设计,通过算术强度平衡的算法设计和现代硬件的实现优化,实现了高效的长上下文建模。
硬件对齐的优化主要包括以下几个方面:
块处理:将序列划分为块,对块进行处理而不是对单个 token 进行处理提高内存访问效率和计算密度例如,FlashAttention 采用基于块的设计,通过块内存访问和计算来提高性能
GPU 内核优化:针对 GPU 架构设计专门的内核函数,如使用 Triton 语言编写高效的稀疏注意力内核。例如,NSA 在 Triton 上实现了硬件对齐的稀疏注意力内核,充分利用了现代 GPU 的特性 内存访问优化:优化内存访问模式,减少内存带宽压力。块选择策略优先考虑连续的块访问,因为现代 GPU 架构对连续块访问的吞吐量明显高于随机索引的读取
并行计算优化:利用 GPU 的并行计算能力,同时处理多个查询或块。例如,NSA 的组中心化加载机制一次性加载单个 token 位置的组内所有查询头,消除冗余的内存传输操作
4.3 基于图处理的稀疏注意力实现
基于图处理的稀疏注意力将注意力视为图问题,将序列中的 token 视为图的节点,注意力掩码定义图的边。这种方法的优点是可以利用图处理算法的高效性,实现真正的稀疏计算。
基于图处理的稀疏注意力实现通常包括以下步骤:
- 图构建:根据注意力掩码构建图,顶点集为序列中的 token,边集由注意力掩码确定。
- 图遍历:使用图遍历算法(如广度优先搜索或深度优先搜索)来访问需要计算注意力的节点。
- 注意力计算:在遍历过程中计算注意力权重和输出。
这种方法的优点是可以仅执行必要的计算,实现工作最优;缺点是需要实现专门的图处理算法,这可能增加实现的复杂性。例如,有研究表明,基于图处理的稀疏注意力实现可以在 NVIDIA A100 GPU 上处理高达 1.6 亿长度的序列。
4.4 稀疏注意力的训练优化
稀疏注意力的训练需要考虑如何有效学习稀疏模式,同时保持模型的稳定性和泛化能力。以下是稀疏注意力训练的一些关键优化技术:
- 端到端训练:
-
- 将稀疏注意力模块与整个模型一起进行端到端训练
-
- 允许稀疏模式根据任务需求进行调整
-
- 例如,NSA 通过端到端训练,在不牺牲模型性能的情况下减少了预训练计算
- 稀疏性约束:
-
- 在训练过程中引入稀疏性约束,鼓励模型学习更稀疏的注意力模式
-
- 例如,可以使用 L1 正则化或 KL 散度来约束注意力权重的分布
- 多分支训练:
-
- 使用多分支结构,如 NSA 引入的滑动窗口分支,明确处理局部上下文
-
- 允许其他分支专注于学习它们各自的特征,而不会被局部模式所捷径
- 注意力头共享:
-
- 在多个注意力头之间共享键值缓存,确保这些头之间的一致块选择
-
- 最小化解码期间的 KV 缓存加载
- 可微稀疏操作:
-
- 使用可微的稀疏操作代替离散操作,确保梯度可以通过稀疏选择过程流动
-
- 例如,使用 softmax 代替 argmax 进行块选择
五、稀疏注意力机制的性能对比
5.1 计算复杂度对比
不同稀疏注意力机制的计算复杂度各有差异,下表对比了几种主流稀疏注意力机制的计算复杂度:
稀疏注意力机制 | 时间复杂度 | 空间复杂度 | 主要优势 | 主要劣势 |
标准注意力 | O(n²) | O(n²) | 理论最优性能 | 计算复杂度高 |
滑动窗口注意力 | O(nw) | O(nw) | 实现简单,计算高效 | 仅能捕获局部信息 |
空洞滑窗注意力 | O(nw) | O(nw) | 扩大感知野,不增加计算量 | 实现复杂 |
BigBird | O(n(r+w+g)) | O(n(r+w+g)) | 线性复杂度,捕获多种依赖 | 参数设置复杂 |
基于哈希的注意力 | O(n log n) | O(n) | 高效处理长序列 | 可能遗漏重要信息 |
基于重要性的动态选择 | O(nk) | O(nk) | 能适应不同输入 | 需要计算重要性分数 |
聚类选择 | O(nk + nc) | O(nk + nc) | 减少计算量,保持覆盖率 | 聚类过程可能增加开销 |
NSA | O(n(w + c + s)) | O(n(w + c + s)) | 全阶段优化,端到端训练 | 实现复杂 |
MoBA | O(nk) | O(nk) | 高效处理超长序列 | 需要块划分 |
MagicPIG | O(n) | O(n) | 低内存占用,CPU 卸载 | 实现复杂 |
H2O | O(n) | O(n) | 大幅减少 KV 缓存 | 仅优化 KV 缓存 |
其中,w 是窗口大小,r 是随机选择的键数量,g 是全局键数量,k 是选中的块数量,c 是每个块的平均大小,s 是压缩块的数量。
5.2 性能表现对比
在实际应用中,不同稀疏注意力机制的性能表现也各有差异。以下是几种主流稀疏注意力机制在不同任务上的性能对比:
- LongBench 基准测试:
-
- NSA 取得了 0.469 的平均分,不仅超越了全注意力基线(+0.032),而且大幅领先其他稀疏注意力方法
-
- 其他方法的得分:Exact-Top 基线 0.423、Quest 0.392、infLLM 0.383、H2O 0.303
- 长上下文 "大海捞针" 测试:
-
- NSA 在 64k 上下文的测试中,在所有位置都实现了完美的检索准确率
-
- 这表明 NSA 在保持细粒度信息方面的卓越能力
- 多跳问答任务:
-
- NSA 相比全注意力在 HPQ 任务上提升了 0.087,在 2Wiki 任务上提升了 0.051
-
- 这表明 NSA 在需要复杂推理的任务中表现出色
- 代码理解任务 (LCC):
-
- NSA 在代码理解任务上提升了 0.069
-
- 这表明 NSA 在处理结构化文本方面的优势
- 段落检索任务 (PassR-en):
-
- NSA 在段落检索任务上提升了 0.075
-
- 这表明 NSA 在信息检索方面的优势
- 数学推理任务:
-
- 在 GSM8K 数学应用题基准测试中,NSA 获得了 0.520 的分数,相比全注意力方法的 0.486 实现了显著提升
-
- 在 AIME 竞赛数学任务中,经过数学推理监督微调的 NSA-R 模型大幅超越了全注意力 - R 模型,在 16k 生成限制下分别获得 0.146 和 0.092 的分数
- 长视频生成任务:
-
- AdaSpa 在 HunyuanVideo 和 CogVideoX1.5-5B 模型上实现了高达 1.78 倍的速度提升,同时保持了生成视频的高保真度
5.3 速度提升对比
不同稀疏注意力机制在实际运行中带来的速度提升也各有差异:
- NSA:
-
- 处理 64k 长度序列时,NSA 在解码阶段速度提升 11.6 倍,前向传播提升 9 倍,反向传播提升 6 倍
- H2O:
-
- 在 OPT-6.7B 和 OPT-30B 模型上,H2O 的吞吐量比三个领先的推理系统(DeepSpeed Zero-Inference、Hugging Face Accelerate 和 FlexGen)分别提高了 29 倍、29 倍和 3 倍
-
- 在相同的批量大小下,H2O 可以将延迟降低多达 1.9 倍
- MagicPIG:
-
- 与仅使用 GPU 的注意力机制相比,MagicPIG 在各种情况下提高了 1.76-4.99 倍的解码吞吐量
-
- 在 Llama-3.1-8B-Instruct 模型上,处理 96k 上下文时,MagicPIG 的解码延迟仅为 54ms
- Quest:
-
- 在 8 倍稀疏度下实现了高达 7.29 倍的注意力解码速度提升
-
- 整体端到端推理速度提升 1.58 倍
- HashAttention:
-
- 在 32 倍稀疏度下,将 GPT-FAST 的注意力延迟降低了 4.3 倍
-
- 将 FlashDecode 的注意力延迟降低了 2.54 倍
- AdaSpa:
-
- 在长视频生成任务中,AdaSpa 在 HunyuanVideo 和 CogVideoX1.5-5B 模型上实现了高达 1.78 倍的速度提升
六、稀疏注意力机制的应用
6.1 自然语言处理中的应用
稀疏注意力在自然语言处理领域有着广泛的应用,特别是在处理长文本时。以下是稀疏注意力在 NLP 中的几个主要应用场景:
6.1.1 长文档理解
长文档理解是稀疏注意力的一个重要应用领域。例如,NSA 在 LongBench 基准测试中表现出色,在单文档 QA、多文档 QA、综合和代码任务类别中均取得了优异成绩。
应用案例:
- Longformer 被用于处理长达 4096 个 token 的文档,显著提高了长文档理解任务的效率和性能。
- NSA 在处理 64k 长度的文本时,能够有效捕捉全局和局部信息,在 "大海捞针" 测试中实现了完美的检索准确率。
- 在需要复杂推理的多跳问答任务上,NSA 相比全注意力分别提升了 0.087(HPQ)和 0.051(2Wiki),证明了其在长文档理解中的优势。
6.1.2 对话系统
对话系统通常需要处理长上下文对话历史,稀疏注意力可以有效减少计算量。例如,H2O 在对话系统中通过动态管理 KV 缓存,显著减少了内存占用,提高了响应速度。
应用案例:
- H2O 在对话系统中,通过识别和保留重要的 token,将 KV 缓存大小减少了 5 倍,同时保持了高对话质量。
- NSA 在处理长对话时,通过三个并行的注意力分支(压缩、选择和滑动窗口)有效捕捉了对话的全局和局部信息。
- Quest 在对话系统中,通过查询感知的稀疏性,动态选择与当前查询最相关的历史信息,提高了响应的准确性和效率。
6.1.3 代码理解与生成
代码理解和生成任务中,稀疏注意力可以帮助模型更高效地处理长代码序列。例如,NSA 在代码理解任务(LCC)上提升了 0.069,证明了其在代码相关任务中的优势。
应用案例:
- Longformer 被用于代码理解任务,能够处理长达 4096 个 token 的代码序列,显著提高了代码理解的效率。
- NSA 在存储级代码生成任务中表现出色,能够更高效地处理长代码序列。
- MoBA 在处理代码库时,通过块划分和 Top-K 选择,有效减少了计算量,同时保持了代码生成的质量。
6.2 计算机视觉中的应用
稀疏注意力在计算机视觉领域也有着广泛的应用,特别是在处理高分辨率图像时。以下是稀疏注意力在计算机视觉中的几个主要应用场景:
6.2.1 图像超分辨率
图像超分辨率任务中,非局部稀疏注意力 (NLSA) 可以有效利用图像的非局部相似性,同时减少计算复杂度。例如,基于非局部稀疏注意力的非局部稀疏网络 (NLSN) 在多个基准测试集上取得了最佳结果。
应用案例:
- NLSN 在图像超分辨率任务中,通过非局部稀疏注意力机制,在 Set5 和 Set14 中带来了约 0.2 dB 的改进。
- DilateFormer 通过多尺度空洞注意力 (MSDA) 在滑动窗口内模拟局部和稀疏的块交互,在 ImageNet-1K 分类任务上实现了 85.6% 的顶级准确率。
6.2.2 高光谱图像处理
在高光谱图像去噪任务中,稀疏空谱 Transformer 模型引入了局部增强模块增强空间特征细节,同时在光谱维度上提出了 Top-k 稀疏自注意力机制,自适应选择前 K 个最相关的光谱通道特征进行特征交互,从而有效捕获空谱特征。
应用案例:
- 该模型在 ICVL 数据集上取得了优异的去噪效果,峰值信噪比达到 40.56 dB。
- 通过稀疏注意力机制,模型能够在保持高光谱图像细节的同时,有效去除噪声,提高图像质量。
6.2.3 视频理解与生成
在视频理解和生成任务中,稀疏注意力可以帮助模型更高效地处理长视频序列。例如,AdaSpa 被应用于长视频生成任务,通过动态模式和在线精确搜索,在保持生成视频高保真度的同时,显著降低了注意力计算的复杂度。
应用案例:
- AdaSpa 在 HunyuanVideo 和 CogVideoX1.5-5B 模型上实现了高达 1.78 倍的速度提升,同时保持了生成视频的高保真度。
- 在长视频生成任务中,稀疏注意力机制能够有效减少计算量,提高生成效率,同时保持视频质量。
6.3 语音处理中的应用
稀疏注意力在语音处理领域也有应用,特别是在处理长语音序列时。以下是稀疏注意力在语音处理中的几个主要应用场景:
6.3.1 远程光电容积脉搏波描记术 (rPPG)
在远程光电容积脉搏波描记术 (rPPG) 任务中,周期性稀疏注意力机制利用了 rPPG 信号的周期性特性,通过预注意力阶段学习周期性模式,过滤掉大量无关的注意力计算,从而实现精细的特征提取。
应用案例:
- RhythmFormer 在多个 rPPG 数据集上取得了最先进的性能,在 PURE 数据集上的 MAE 为 0.27,RMSE 为 0.47,ρ 为 0.99。
- 通过周期性稀疏注意力,模型能够有效捕捉 rPPG 信号的周期性特征,提高心率估计的准确性。
6.3.2 语音识别
在语音识别任务中,稀疏注意力可以帮助模型更高效地处理长语音序列,同时保持对关键声学特征的关注。例如,有研究将稀疏注意力应用于端到端语音识别模型,显著提高了模型的效率和准确性。
应用案例:
- 稀疏注意力在语音识别中,可以动态选择与当前声学特征最相关的上下文,减少不必要的计算。
- 通过稀疏注意力机制,语音识别模型能够在保持高识别准确率的同时,提高处理速度,降低计算资源消耗。
6.3.3 音频处理
在音频处理任务中,稀疏注意力可以帮助模型更高效地处理长时间音频信号,同时捕获重要的音频特征。例如,有研究将稀疏注意力应用于音频去噪和音频分类任务,取得了良好的效果。
应用案例:
- 在音频去噪任务中,稀疏注意力可以动态选择与噪声特征最相关的音频片段,提高去噪效果。
- 在音频分类任务中,稀疏注意力可以帮助模型更高效地捕捉音频信号的全局和局部特征,提高分类准确率。
6.4 时序数据分析中的应用
稀疏注意力在时序数据分析领域也有应用,特别是在处理长时间序列时。以下是稀疏注意力在时序数据分析中的几个主要应用场景:
6.4.1 气温预报
在气温预报任务中,基于稀疏注意力与自适应时序分解的气温预报模型 (ATFSAS) 结合了稀疏注意力机制以有效捕捉气象观测数据间的长期依赖性,同时通过多层解码器与自适应时序分解单元,逐步细化预报信号中的周期性和趋势性分量。
应用案例:
- 该模型在德国耶拿气象数据集上进行 24 小时精细化气温预报,平均绝对误差为 1.7108℃。
- 通过稀疏注意力机制,模型能够有效捕捉气象数据中的长期依赖关系,提高气温预报的准确性。
6.4.2 交通流预测
在交通流预测任务中,时空图卷积网络结合稀疏注意力机制可以有效捕捉交通数据中的动态时空相关性。例如,有研究提出了一种基于时空图卷积的交通流预测模型,使用局部敏感哈希注意力来降低原始注意力的计算复杂度,在多个数据集上取得了优异的性能。
应用案例:
- 该模型在交通流预测任务中,通过稀疏注意力机制有效捕捉了交通数据中的时空相关性,提高了预测的准确性。
- 稀疏注意力机制能够帮助模型更高效地处理大规模交通数据,减少计算量,提高预测效率。
6.4.3 金融时间序列分析
在金融时间序列分析任务中,稀疏注意力可以帮助模型更高效地处理长时间的金融数据,同时捕捉关键的市场趋势和异常模式。例如,有研究将稀疏注意力应用于股票价格预测和金融风险评估任务,取得了良好的效果。
应用案例:
- 在股票价格预测任务中,稀疏注意力可以动态选择与当前市场状态最相关的历史数据点,提高预测的准确性。
- 在金融风险评估任务中,稀疏注意力可以帮助模型更高效地捕捉金融时间序列中的异常模式,提高风险识别的准确性。
七、稀疏注意力机制的发展趋势与挑战
7.1 主要发展趋势
稀疏注意力机制的研究正在快速发展,以下是几个主要的发展趋势:
- 硬件对齐的稀疏注意力:
-
- 未来的稀疏注意力研究将更加注重硬件对齐的优化,以充分发挥现代 GPU 和 TPU 等加速硬件的性能优势
-
- 例如,NSA 采用了硬件对齐的算法设计,实现了高效的长上下文建模
- 动态自适应的稀疏注意力:
-
- 未来的稀疏注意力将更加注重动态自适应能力,能够根据输入内容和任务需求自动调整注意力模式
-
- 例如,Tactic 方法通过设置目标注意力分数比例,使令牌选择自然适应注意力稀疏性的变化
- 混合稀疏注意力:
-
- 未来的稀疏注意力将更多采用混合方法,结合固定模式和动态稀疏注意力的优点
-
- 在不同层次或不同位置使用不同的稀疏模式
-
- 例如,NSA 将压缩注意力、选择性注意力和滑动窗口注意力三种方法结合起来,取得了优异的性能
- 基于哈希的高效稀疏注意力:
-
- 基于哈希的稀疏注意力将继续发展,特别是在结合学习到的哈希函数方面
-
- 例如,MagicPIG 使用学习到的哈希函数进行采样,在 CPU 上实现了高效的注意力计算
- 头自适应稀疏注意力:
-
- 未来的稀疏注意力将更加注重头自适应能力,根据每个头的重要性调整稀疏度
-
- 例如,AdaSpa 提出了头自适应分层块稀疏注意力,根据每个头的召回率调整稀疏度
7.2 面临的主要挑战
尽管稀疏注意力机制取得了显著进展,但仍面临以下主要挑战:
- 理论基础的完善:
-
- 稀疏注意力的理论基础仍需进一步完善,特别是在稀疏模式与模型性能之间的关系方面
-
- 例如,如何确定最佳的稀疏度和稀疏模式,以及如何保证稀疏注意力不会导致信息丢失,这些问题仍需深入研究
- 计算效率与模型性能的平衡:
-
- 在提高计算效率的同时保持模型性能是一个重要挑战
-
- 例如,过高的稀疏度可能导致模型性能下降,而过低的稀疏度则无法充分发挥稀疏注意力的效率优势
- 长序列处理的挑战:
-
- 处理极长序列(如百万级 token)时,稀疏注意力仍面临内存和计算效率的挑战
-
- 例如,即使使用稀疏注意力,存储完整的 KV 缓存也可能导致内存不足
- 任务适应性的挑战:
-
- 不同任务对注意力模式的需求各不相同,如何设计能够适应不同任务的通用稀疏注意力机制是一个重要挑战
-
- 例如,自然语言处理任务通常需要不同的注意力模式,而计算机视觉任务可能需要不同的模式
- 训练稳定性的挑战:
-
- 稀疏注意力机制在训练过程中可能面临稳定性问题,特别是在使用离散操作(如聚类、块选择)时
-
- 例如,如何确保梯度能够有效通过稀疏选择过程,保持训练的稳定性,是一个需要解决的问题
7.3 未来研究方向
基于上述发展趋势和挑战,以下是稀疏注意力机制未来的几个重要研究方向:
- 理论研究:
-
- 深入研究稀疏注意力的理论基础,包括稀疏模式的设计原则、稀疏度与模型性能的关系等
-
- 例如,研究如何通过理论分析确定最佳的稀疏模式和稀疏度,从而指导实际应用
- 硬件协同设计:
-
- 研究稀疏注意力与新型硬件架构的协同设计,以充分发挥硬件加速的潜力
-
- 例如,设计专门针对稀疏注意力优化的 ASIC 或 FPGA 加速器,以支持处理更长的序列和更高的稀疏度
- 多模态稀疏注意力:
-
- 研究适用于多模态数据的稀疏注意力机制,结合不同模态的特点设计高效的稀疏模式
-
- 例如,将图像的空间稀疏性与文本的序列稀疏性结合,设计统一的多模态稀疏注意力机制
- 自适应稀疏注意力:
-
- 研究能够根据输入内容和任务需求自动调整稀疏模式的自适应稀疏注意力机制
-
- 例如,设计能够动态调整稀疏度和稀疏模式的注意力机制,以适应不同的任务和输入
- 稀疏注意力的压缩与量化:
-
- 研究稀疏注意力的压缩与量化技术,以减少模型的存储和计算需求
-
- 例如,研究如何对稀疏注意力的权重和掩码进行有效压缩,以及如何利用低精度计算进一步提高效率
- 可解释性与可控性增强:
-
- 研究稀疏注意力的可解释性和可控性,使模型的注意力模式更易于理解和控制
-
- 例如,开发可视化工具和控制机制,帮助用户理解和调整模型的注意力模式
八、结论
本文全面介绍了长文本大模型中的稀疏注意力机制,包括其理论基础、主流变体、实现优化、性能对比及其在不同领域的应用。通过本文的分析,可以得出以下结论:
- 稀疏注意力是解决长文本处理挑战的有效方法:
-
- 通过选择性地关注最重要的 token,稀疏注意力可以在保持模型性能的同时显著降低计算复杂度和内存使用
-
- 是处理长序列数据的有效方法,使大模型能够处理长达 128k 甚至更长的上下文
- 不同稀疏注意力变体各有优缺点:
-
- 固定模式稀疏注意力(如滑动窗口注意力、BigBird)实现简单,但灵活性较差
-
- 动态稀疏注意力(如基于重要性的动态选择、聚类选择)能够适应不同输入,但计算复杂度较高
-
- 基于硬件优化的稀疏注意力(如 NSA、MoBA)能够充分发挥硬件性能,但实现复杂
- 硬件对齐的优化是发挥稀疏注意力效率的关键:
-
- 通过块处理、GPU 内核优化和内存访问优化等硬件对齐的方法,可以充分发挥稀疏注意力的效率优势
-
- 实现高效的长上下文建模,如 NSA 在处理 64k 长度序列时,解码阶段速度提升 11.6 倍
- 稀疏注意力在多个领域有广泛应用:
-
- 在自然语言处理领域,稀疏注意力可以有效处理长文档理解、对话系统和代码生成等任务
-
- 在计算机视觉领域,稀疏注意力可以应用于图像超分辨率、高光谱图像处理和视频生成等任务
-
- 在语音处理和时序数据分析领域,稀疏注意力也有广泛的应用前景
- 稀疏注意力仍面临多项挑战和发展机遇:
-
- 理论基础的完善、计算效率与模型性能的平衡、长序列处理的挑战和任务适应性的挑战是当前稀疏注意力面临的主要挑战
-
- 硬件协同设计、多模态稀疏注意力、自适应稀疏注意力和稀疏注意力的压缩与量化是未来的重要研究方向
总之,稀疏注意力机制是大语言模型处理长文本的关键技术,通过选择性地关注重要信息,显著提高了模型的效率和性能。随着研究的深入和技术的发展,稀疏注意力机制将在更多领域发挥重要作用,推动大语言模型的进一步发展和应用。