枚举

本文介绍了一种利用计算机重复枚举来解决熄灯问题的算法。通过遍历首行开关的64种状态,并根据开关设置更新每一行的灯的状态,最终找出能使最后一行灯全部熄灭的开关操作方案。代码示例展示了如何实现这一过程,涉及位运算和数组操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用计算机解决问题的一大好处就是可以重复枚举去试结果,这对于没有数学公式或者难以找到数学公式的题目很有用。
在枚举的时候我们要考虑能否缩小枚举的范围,这对算法运行非常有帮助。

熄灯问题:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# include <memory>
# include <string>
# include <cstring>
# include <iostream>
using namespace std;
int GetBit(char c, int i) {
	// 取c的第i位
	return (c >> i) & 1;
}
void SetBit(char& c, int i, int v) {
	// 设置c的第i位为v
	if (v)
		c |= (1 << i);
	else
		c &= ~(1 << i);
}
void Flip(char& c, int i) {
	// 将c的第i位取反
	c ^= (1 << i);
}
void OutputResult(int t, char result[]) {
	// 输出结果,从五个字符数组中输出灯的状态
	// 每个字符代表一行灯,从右往左
	cout << "PUZZLE #" << t << endl;
	for (int i = 0; i < 5; ++i) {
		for (int j = 0; j < 6; ++j) {
			cout << GetBit(result[i], j);
			if (j < 5)
				cout << " ";
		}
		cout << endl;
	}
}
int main() {
	// 初始灯的状态
	char oriLights[5];
	// 过程中灯的状态
	char lights[5];
	// 结果
	char result[5];
	char switchs;
	// 要解决的问题个数
	int T;
	cin >> T;
	for (int t = 1; t <= T; ++t) {
		// 初始化,全置0
		memset(oriLights, 0, sizeof(oriLights));
		for (int i = 0; i < 5; i++) {
			// 读入最初灯的状态
			for (int j = 0; j < 6; j++) {
				int s;
				cin >> s;
				SetBit(oriLights[i], j, s);
			}
		}
		for (int n = 0; n < 64; ++n) {
			// 遍历首行开关的64种状态
			memcpy(lights, oriLights, sizeof(oriLights));
			switchs = n;  // 第i行的开关状态
			for (int i = 0; i < 5; ++i) {
				result[i] = switchs;  // 第i行的开关方案
				//根据开关方案设置灯的情况
				for (int j = 0; j < 6; ++j) {
					// 如果开关方案显示要改变
					if (GetBit(switchs, j)) {
						if (j > 0)  //不是第一列
							Flip(lights[i], j - 1);// 改左灯
						Flip(lights[i], j); // 改开关位置的灯
						if (j < 5)   // 不是最后一列
							Flip(lights[i], j + 1); // 改右灯
					}
				}
				if (i < 4)    // 不是最后一行
					lights[i + 1] ^= switchs;  // 改下一行的灯
				switchs = lights[i];  // 第i+1行开关方案和第i行灯情况同

			}
			// 如果这样操作完之后,最后一行灯全灭了
			if (lights[4] == 0) {
				// 输出相应的开关操作
				OutputResult(t, result);
				break;
			}

		}
	}
	return 0;
}

一个样例:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值