【下篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史

这篇博客回顾了 YOLO 物体检测模型的发展,从 YOLOv6 的工业应用到 YOLOv7 的性能提升,再到 DAMO-YOLO 和 YOLOv8 的技术创新。YOLOv7 在速度和精度上超越了前作,而 YOLOv8 提供了不同规模的版本,保持了实时性能。PP-YOLO 系列也在 PaddlePaddle 框架下贡献了高效实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。上回我解释了YoloX, 今天从Yolov6开始。

YOLOv6:面向工业应用的单级物体检测框架

在这里插入图片描述

美团视觉人工智能事业部(Meituan Vision AI Department)于 2022 年 9 月在 ArXiv 上发表了《YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications

与 YOLOv4 和 YOLOv5 类似,它为工业应用提供了不同尺寸的各种型号。

随着基于锚点的方法的发展趋势,YOLOv6 采用了无锚点检测器。

YOLOv6-L 在 NVIDIA Tesla T4 上以约 50 FPS 的速度实现了 52.5% 的 AP 和 70% 的 AP50。

YOLOv7

在这里插入图片描述
2022 年 7 月,YOLOv4 和 YOLOR 的作者在 ArXiv 上发表了 YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

该物体检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值