人脸识别和 ArcFace:用于深度人脸识别的附加角边际损失

本文介绍了 ArcFace 方法在人脸识别中的应用,对比了 SoftMax 和 ArcFace 的区别,提供了 ArcFace 的几何解释和数学原理,展示了其在增强特征表示和决策边界清晰度方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本文中,您将发现一种 ArcFace 方法,该方法可获得用于人脸识别的高分辨特征。阅读本文后,你将了解:

  • 人脸识别任务如何工作。
  • 如何计算人脸匹配。
  • SoftMax 和 ArcFace 的直观区别。
  • ArcFace 的几何解释。
  • ArcFace 背后的数学原理

本文假定您已经熟悉用于多类分类、检测和 SoftMax 损失的卷积神经网络概念,并重点介绍人脸识别任务和 ArcFace 方法。

人脸识别任务

在深入研究 ArcFace 方法之前,让我们先了解一下人脸识别任务是如何工作的,以及为什么我们需要它。

人脸识别是识别或验证图像中的一张或多张人脸的任务。我们有很多理由想要识别图像中的人脸:机场安检可以验证乘客的脸是否与护照上的人脸相符;Facebook 可以识别和标记图像中的人;在工作场所,我们希望只允许授权人员进入。

验证任务就是比较两张面孔,检查它们是否是同一个人。

识别任务是将给定的人脸与存储的人脸数据库进行比较和识别。

人脸识别过程通常包括三个主要步骤:检测图像中的人脸、特征提取和人脸匹配。

人脸匹配

特征嵌入

用于分类的典型 CNN 包括特征提取和分类。在训练过程中,模型会学习独特的面部特征,并在特征提取过程中生成特征嵌入。训练完成后,就可以跳过分类部分,为每张人脸图像生成特征嵌入,这就好比数字 “指纹”。另一种理解嵌入向量的方法是将高维度数据转换为相对较低的维度。

通过使用两个向量之间的余弦相似度或平方距离,这些嵌入可以帮助我们了解两个人之间是否存在相似性。

同一个人的两张不同图像的向量相似度高、距离小,而不同人的两张图像相似度低、平方距离大。

现在,给定两张人脸图像,在检测并裁剪人脸后,我们可以通过 ArcFac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值