【论文解读】通过多标记预测建立更好更快的大型语言模型

Meta 的这篇多标记预测论文显示,与当前的下一标记预测器相比,多头预测器内存效率高、性能更好、训练速度更快。

https://arxiv.org/pdf/2404.19737

在这里插入图片描述

主要收获:

  • 多标记预测是对 LLM 训练的一种简单而强大的修改,可提高样本效率和各种任务的性能。
  • 这种方法在大规模应用中尤为有效,大型模型在 MBPP 和 HumanEval 等编码基准测试中表现出显著优势。
  • 多标记预测可通过自指定解码加快推理速度,与下一个标记预测相比,速度可能提高 3 倍。
  • 该技术促进了全局模式的学习,提高了 LLM 的算法推理能力
  • 虽然该技术对生成任务很有效,但在基于多选题的基准测试中,论文发现结果好坏参半。

FAIR(Facebook 人工智能研究团队)的研究人员撰写了这篇论文,结果看起来很有希望。我很希望这篇论文能成为实际产品。我认为这篇论文具备了成为像《专家混合物》(Mixture of Experts)那样的开创性论文的所有要素,而《专家混合物》已被证明是当前一代模型的开创性论文。

导言:

论文首先强调了目前基于下一个标记预测的 LLM 训练方法的局限性。尽管这些模型的能力令人印象深刻,但与人类相比,它们需要大量数据才能达到类似的流畅度。作者认为,next-token 预测过于关注局部模式,忽略了 "困难 "决策,导致学习效率低下。他们提出了多标记词预测作为克服这些局限性的解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值