
甄选文章
文章平均质量分 91
吴脑的键客
凡人修仙,AGI散修。领域展开——四海皆兄弟!!!了解更多前沿资讯,关注公众号——吴脑的键客
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【难道有钱就可以为所欲为吗?】腾讯发布混元Video一个13B的DiT视频生成模型
我们介绍的混元视频是一种新颖的开源视频基础模型,它在视频生成方面的性能可与领先的闭源模型相媲美,甚至更胜一筹。浑源视频是一个综合框架,集成了多个关键贡献,包括数据整理、图像视频联合模型训练以及旨在促进大规模模型训练和推理的高效基础架构。此外,通过有效的模型架构和数据集扩展策略,我们成功训练了一个拥有超过 130 亿个参数的视频生成模型,使其成为所有开源模型中最大的模型。我们进行了大量的实验,并实施了一系列有针对性的设计,以确保高视觉质量、运动多样性、文本视频对齐和生成稳定性。原创 2024-12-04 12:35:05 · 1451 阅读 · 0 评论 -
介绍 Rerank 3:高效企业搜索和检索的新基础模型
今天,我们将推出最新的基础模型 Rerank 3,其目的是增强企业搜索和检索增强生成 (RAG) 系统。我们的模型兼容任何数据库或搜索索引,也可插入任何具有本地搜索功能的传统应用程序。只需一行代码,Rerank 3 就能提高搜索性能或降低 RAG 应用程序的运行成本,对延迟的影响可以忽略不计。Rerank 3 为企业搜索提供了最先进的功能,包括具有长上下文的生成模型能够执行 RAG。但是,为了优化准确性、延迟和成本,RAG 解决方案需要结合生成模型和我们的 Rerank 模型。原创 2024-12-04 11:14:15 · 994 阅读 · 0 评论 -
计算机视觉和机器人技术中的下一个标记预测与视频扩散相结合
"序列模型的目的是以已知的过去为条件,预测未知的未来,这是一种二进制掩蔽。在测试时,我们的系统可以 "解除 “标记集合的屏蔽,并在不久的将来以较低的噪音水平扩散一个序列。在求解二维迷宫的任务中,Diffusion Forcing 的表现优于六种基线方法,它能更快地生成通往目标位置的计划,这表明它可以成为未来机器人的有效规划器。这一名称来源于 “教师强迫”(Teacher Forcing),它是一种传统的训练方案,将完整的序列生成分解成更小、更容易的下一个标记生成步骤(就像一位好老师简化复杂的概念一样)。原创 2024-11-11 21:31:19 · 1397 阅读 · 0 评论 -
Mixture-of-Experts (MoE): 条件计算的诞生与崛起【下篇】
既然我们已经研究了条件计算的早期工作,那么我们就可以看看 MoE 在变换器架构中的一些应用。如今,基于 MoE 的 LLM 架构(如 Mixtral [13] 或 Grok)已广受欢迎,但 MoE 在语言模型方面的探索还处于几个阶段。在此,我们将探讨如何将 MoE 应用于编码器-解码器转换器架构。这项工作与现代 LLM 应用息息相关,并为在实践中有效使用 MoE 提供了无数经验。这些研究为以后探索基于模拟引擎的生成式 LLM 的工作奠定了基础。原创 2024-09-30 06:00:00 · 1796 阅读 · 0 评论 -
Mixture-of-Experts (MoE): 条件计算的诞生与崛起【上篇】
Decoder-only transformer 架构上图所示为大多数生成式 LLM 使用的标准纯解码器变换器架构;有关该架构的深入概述,请参见此处。在 LLM 中,MoE 对这一架构进行了简单的修改–用 MoE 层取代前馈子层!这个 MoE 层由多个专家组成(即从几个专家 [13] 到数千个专家 [5]),其中每个专家都是自己的前馈子层,具有独立的参数集;具体描述见下文。原创 2024-09-29 06:00:00 · 1338 阅读 · 0 评论 -
理解和使用语言模型的监督微调 (SFT)
监督微调(SFT)是 LLM 对齐过程中的第一个训练步骤,实际上非常简单。首先,我们需要策划一个高质量 LLM 输出数据集–这些数据集基本上就是 LLM 表现正确的示例;见下文。然后,我们直接通过这些示例对模型进行微调。在这里,微调的 "监督 "意义来自于我们正在收集模型应该模仿的示例数据集。然后,模型在微调过程中学会复制这些示例的风格。与下一个标记预测的关系 有趣的是,SFT 与语言模型预训练并无太大区别–预训练和 SFT 都将下一个标记预测作为基本训练目标!主要区别在于使用的数据。原创 2024-09-26 06:00:00 · 2079 阅读 · 0 评论 -
什么是启发式过滤(Heuristic Filtering)?
启发式过滤是一种在包括计算机科学和网络安全在内的各个领域中用于识别模式并根据一组规则和算法做出决策的技术。在垃圾邮件过滤器或防病毒软件的上下文中,启发式过滤用于根据其特征识别可疑电子邮件或文件,即使以前未将其识别为恶意。原创 2024-09-25 06:05:35 · 1555 阅读 · 0 评论 -
新纪录将圆周率计算到了小数点后202万亿位 用了28块61.44TB SSD
本次计算采用了戴尔PowerEdge R760服务器,配置Intel五代至强铂金8592+ 64核心处理器、1TB DDR5内存、Solidigm D5-P5336 61.44TB SSD,一共多达28块,总容量将近1.5PB。独立存储研究机构StorageReview与闪存领导厂商Solidigm联合宣布,将圆周率计算到了小数点后202万亿位(确切地说是202,112,290,000,000位数),相比今年3月初的原有记录105万亿位几乎翻了一番。原创 2024-07-05 07:30:57 · 365 阅读 · 0 评论 -
【论文解读】通过多标记预测建立更好更快的大型语言模型
Meta 的这篇多标记预测论文显示,与当前的下一标记预测器相比,多头预测器内存效率高、性能更好、训练速度更快。原创 2024-06-24 15:56:09 · 1160 阅读 · 0 评论 -
【非常实验】如何在移动设备上运行 Docker?
本章就从在 DevOps 中最基本但也是最强大的工具 Docker 开始。最近,我在尝试更多Termux的可能性,于是就想着试试Docker适不适合arm架构。我用的是天玑9000芯片,而不是高通,所以显示不出来 Qualcomm。所以我决定从在手机上运行 docker 开始,但这可能吗?让我们一起来看看吧。原创 2024-06-23 09:45:50 · 1661 阅读 · 0 评论 -
【非常实验】Android模拟x86_64系统——安装Alpine虚拟机
安卓是一款功能强大的操作系统,为什么不试试它的极限呢?百无聊赖中,我发现了各种 Android 修补项目。这激起了我对 DevOps 的好奇心,促使我探索在该平台上运行容器。这种好奇心又把我带入了另一个兔子洞:在 Android 上运行虚拟机。这其中经历了许多曲折,也许以后有必要写一篇关于 Docker 的文章。现在,让我们专注于安装虚拟机。我用的是天玑9000芯片,而不是高通,所以显示不出来 Qualcomm。原创 2024-06-19 17:10:27 · 1866 阅读 · 0 评论 -
Caffe、PyTorch、Scikit-learn、Spark MLlib 和 TensorFlowOnSpark 概述
在 AI 框架方面,有几种工具可用于图像分类、视觉和语音等任务。有些很受欢迎,如 PyTorch 和 Caffe,而另一些则更受限制。以下是四种流行的 AI 工具的亮点。原创 2024-06-16 14:20:19 · 1234 阅读 · 1 评论 -
人脸识别和 ArcFace:用于深度人脸识别的附加角边际损失
在本文中,您将发现一种 ArcFace 方法,该方法可获得用于人脸识别的高分辨特征。本文假定您已经熟悉用于多类分类、检测和 SoftMax 损失的卷积神经网络概念,并重点介绍人脸识别任务和 ArcFace 方法。原创 2024-06-11 09:13:11 · 1561 阅读 · 0 评论 -
【下篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史
YOLO 演进过程中的关键模式包括使用和放弃锚点、从 Darknet 转向 PyTorch 和 PaddlePaddle 框架、主干架构的变化,以及重点平衡实时对象检测的速度和准确性。锚点在 YOLO 的开发过程中发挥了重要作用,YOLOv2 将锚点纳入其中,提高了边界框预测的准确性。然而,YOLOX 的无锚点方法取得了最先进的效果,因此 YOLO 的后续版本放弃了锚点。原创 2024-06-09 09:24:16 · 1516 阅读 · 0 评论 -
【中篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史
YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。上回我解释了Yolo v1, 今天从Yolov2开始。原创 2024-06-08 10:35:54 · 778 阅读 · 0 评论 -
【上篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史
YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。在本文中,我将与大家分享我在阅读一篇长达时获得的见解,该论文深入探讨了 YOLO 模型的进步。这篇评论全面概述了 YOLO 框架的演变过程,涵盖了从最初的 YOLOv1 到最新的 YOLOv8 全部 15 个模型。原创 2024-06-07 16:34:16 · 1320 阅读 · 0 评论 -
LLM 基准测试的深入指南
LLM 基准测试是一种标准化的性能测试,用于评估 AI 语言模型的各种功能。基准测试通常由数据集、问题或任务集合以及评分机制组成。在经过基准测试评估后,模型通常会获得 0 到 100 的分数。基准对组织(即产品经理和开发人员)以及用户很有价值,因为它们提供了 LLM 性能的客观指示。提供一个通用的、标准化的评估集合来衡量 LLM,可以更轻松地将一个模型与另一个模型进行比较,并最终为您提议的用例选择最佳模型。原创 2024-06-01 09:09:59 · 1293 阅读 · 0 评论