如何理解过拟合

博客介绍了机器学习中的过拟合现象,即特征过于局部、严格导致丧失全局特征。以机器学习天鹅特征为例,若训练的天鹅全是白色,机器会认为天鹅羽毛都是白的,将黑天鹅误判,“天鹅是白色”这一特征就是过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.过拟合

过拟合即为特征过于局部,过于严格而导致机器学习丧失全局特征,
给一群天鹅让机器来学习天鹅的特征,经过训练后,知道了天鹅是有翅膀的,天鹅的嘴巴是长长的弯曲的,天鹅的脖子是长长的有点曲度,天鹅的整个体型像一个“2”且略大于鸭子.这时候你的机器已经基本能区别天鹅和其他动物了。然后,很不巧你的天鹅全是白色的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅.–所以天鹅是白色的这个特征就是过拟合

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值