自动驾驶感知-车道线系列(二)——Canny边缘检测

本文介绍了Canny边缘检测方法,它是自动驾驶感知中识别车道线的关键技术。Canny算法通过平滑处理、梯度检测、非极大值抑制和滞后阈值处理四个步骤检测图像边缘,具有低失误率、高位置精度和单边缘响应的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括:(i)深度上的不连续;(ii)表面方向不连续;(iii)物质属性变化;(iv)场景照明变化。
边缘检测算子包括:

  • 一阶: Roberts Cross算子,Prewitt算子,Sobel算子,Kirsch算子,罗盘算子;
  • 二阶: Marr-Hildreth,在梯度方向的二阶导数过零点,Canny算子,Laplacian算子。

其中,Canny算子(或者这个算子的变体)是最常用的边缘检测方法。

一、Canny是什么?

Canny边缘检测方法是由Canny于1986年提出的一种被公认为效果较好的边缘检测方法。
在介绍Canny算法的具体流程之前,先说一下边缘检测方法的3项指标:

  • 低失误率,即不能漏检也不能错检;
  • 高的位置精度,即标定的边缘像素点与真正的边缘中心之间距离应该为最小;
  • 每个边缘应该有唯一的响应,即得到单像素宽度的边缘。

Canny的贡献不仅是提出了一种边缘检测算子,而且还给出了衡量边缘检测算子好坏的准则:

  • 信噪比准则;
  • 定位精度准则;
  • 单边缘响应准则。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_归尘_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值