前言
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括:(i)深度上的不连续;(ii)表面方向不连续;(iii)物质属性变化;(iv)场景照明变化。
边缘检测算子包括:
- 一阶: Roberts Cross算子,Prewitt算子,Sobel算子,Kirsch算子,罗盘算子;
- 二阶: Marr-Hildreth,在梯度方向的二阶导数过零点,Canny算子,Laplacian算子。
其中,Canny算子(或者这个算子的变体)是最常用的边缘检测方法。
一、Canny是什么?
Canny边缘检测方法是由Canny于1986年提出的一种被公认为效果较好的边缘检测方法。
在介绍Canny算法的具体流程之前,先说一下边缘检测方法的3项指标:
- 低失误率,即不能漏检也不能错检;
- 高的位置精度,即标定的边缘像素点与真正的边缘中心之间距离应该为最小;
- 每个边缘应该有唯一的响应,即得到单像素宽度的边缘。
Canny的贡献不仅是提出了一种边缘检测算子,而且还给出了衡量边缘检测算子好坏的准则:
- 信噪比准则;
- 定位精度准则;
- 单边缘响应准则。