PyTorch框架学习-总览

本文记录了从TensorFlow转向PyTorch的学习过程,强调理解深度学习框架和阅读技术文档的重要性。通过对比传统算法与机器学习算法,阐述深度学习在表示学习中的位置,并讨论了SVM与神经网络的发展。重点在于掌握构建模型的思路,而非仅仅学习具体模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以前总用的tf框架,现在系统的练习下pytorch,将部分学习记录整理在此,尽量简洁明了,加油。

要求:会看技术文档很关键

教学课程很难跟上技术迭代的步伐,我们作为工程实践者一定要学会如何适应正在变化的技术。要知道深度学习框架是什么,要会看技术文档。
在这里插入图片描述

学习目标

  1. 如何用pytorch实现学习系统
  2. 理解基本的神经网络(深度学习)

知识储备

线性代数、概率论与数理统计(基本分布\随机变量与分布的关系);
python(class\magic机制)。

笔记

1. 算法定义的不同

以往算法课

算法设计中指的是穷举法、贪心法、分治法、动态规划等。

ML、DL中的算法

是从数据中(机器)学习到的算法。机器学习是基于统计的方法。

范围

深度学习属于表示学习中。
在这里插入图片描述

2. 如何实现以后学习系统

表示学习中特征和学习器分开训练(如很多无监督学习);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值