异常的类型:意料之外的峰谷、趋势变动、水平变化等。
异常检测的方式主要分为两种,第一是直接预测出异常,第二是通过预测结果,然后根据置信区间判断异常。
异常检测模型:
STL分解
CART树
ARIMA
指数平滑
神经网络LSTM
https://www.jqr.com/article/000442
异常的类型:意料之外的峰谷、趋势变动、水平变化等。
异常检测的方式主要分为两种,第一是直接预测出异常,第二是通过预测结果,然后根据置信区间判断异常。
异常检测模型:
STL分解
CART树
ARIMA
指数平滑
神经网络LSTM
https://www.jqr.com/article/000442