FY 4A AGRI成像仪中国区域4KML1定位数据太阳天顶角数据的简单处理

本文介绍了如何处理FY4A AGRI成像仪的太阳天顶角数据,通过二值化揭示夏至日太阳照射情况。详细解析了数据下载、文件属性查看及ENVI处理,展示了处理后的图像变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 了解实验数据

1.1 文件名解释

以一个文件名为例:

FY4A:卫星名;AGRI:仪器名称;N_REGC:中国区域;1047E:星下点经度;L1:数据级别;GEO:定位数据;

20180620163000:观测起始时间:2018年6月20日16时30分00秒(UTC时);

20180620163416:观测结束时间:2018年6月20日16时34分16秒(UTC时);

4000M:空间分辨率;HDF:文件格式。

1.2 下载数据

这个数据的时间间隔有些不太确定,一天大概有100多个数据文件,今天这个实验选择:北京时间2018年6月21日(即2018年的夏至)。分析每个半点的数据,即文件名中观测起始时间的后四位是3000。

这样如果一天的数据数目完整,可以下载24个半点的数据。需要注意的是,因为我们下载的是北京时间2018年6月21日的24个数据,而在下载网页选择中选择的是世界时UTC,与北京

### 使用 Python 解析 FY4A AGRI Level-1 数据 解析 FY4A AGRI Level-1 数据通常涉及处理 HDF 或 NetCDF 文件格式的数据集。以下是实现这一目标的具体方法: #### 方法概述 可以利用 `h5py` 和 `netCDF4` 库来读取和操作这些文件中的数据[^1]。这两个库分别支持 HDF5 和 NetCDF 格式的高效访问。 #### 安装必要的库 为了确保能够顺利运行代码,需先安装所需的依赖项: ```bash pip install h5py netCDF4 numpy matplotlib cartopy ``` 如果遇到网络问题,可使用清华 Anaconda 镜像源加速安装过程。 --- #### 示例代码:加载并显示 FY4A AGRI L1 数据 以下是一个完整的示例脚本,展示如何加载和可视化 FY4A 的亮度温度(Brightness Temperature, BT)数据: ```python import h5py import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # 打开HDF5文件 file_path = 'path_to_your_fy4a_l1_data.hdf' # 替换为实际路径 with h5py.File(file_path, 'r') as hdf_file: # 查看文件结构 print(list(hdf_file.keys())) # 假设BT数据存储在 '/Data/BrightnessTemperature' bt_dataset = hdf_file['/Data/BrightnessTemperature'] brightness_temperature = bt_dataset[:] # 处理缺失值 (假设填充值为 -999) brightness_temperature[brightness_temperature == -999] = np.nan # 可视化数据 plt.figure(figsize=(8, 6)) m = Basemap(projection='cyl', resolution='l') lon, lat = np.meshgrid(np.linspace(-180, 180, brightness_temperature.shape[1]), np.linspace(90, -90, brightness_temperature.shape[0])) xi, yi = m(lon, lat) cs = m.pcolormesh(xi, yi, brightness_temperature, cmap='jet', shading='auto') m.drawcoastlines() m.colorbar(cs, location='bottom', pad="10%") plt.title('FY4A AGRI Brightness Temperature Visualization') plt.show() ``` 上述代码实现了以下几个功能: 1. **打开 HDF5 文件** 并提取指定变量。 2. **过滤无效值** (如 `-999`),将其替换为 NaN。 3. 利用 Matplotlib 和 Basemap 绘制全球范围内的亮度温度分布图。 --- #### 关键点说明 - **文件路径**: 确保提供正确的 FY4A 数据文件路径。 - **数据字段名称**: 不同版本的 FY4A 数据可能具有不同的内部结构。可以通过打印 `list(hdf_file.keys())` 来确认具体字段名。 - **地理投影**: 如果需要更复杂的地图投影效果,建议引入 Cartopy 替代 Basemap。 --- #### 推荐工具与资源 除了基础库外,还可以考虑如下扩展工具: - **PyTplot**: 提供时间序列绘图能力。 - **Xarray**: 支持多维数组的操作以及 NetCDF 文件的无缝集成。 - **MetPy**: 能够辅助完成气象学计算任务。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值