目录
题目描述
方法一、回溯+每次判断是否合法
class Solution {
vector<vector<string>> res;
vector<string> chessboard;
public:
vector<vector<string>> solveNQueens(int n) {
chessboard.resize(n,string(n,'.'));
backtrack(n,0);
return res;
}
void backtrack(int n,int row){
if(row == n){
res.push_back(chessboard);
return;
}
for(int col = 0;col < n;col++){
if(valid(row,col,n)){
chessboard[row][col] = 'Q';
backtrack(n,row+1);
chessboard[row][col] = '.';
}
}
}
bool valid(int row,int col,int n){
for(int i = row-1;i>=0;i--){
if(chessboard[i][col] == 'Q')
return false;
}
for(int i = row-1,j = col-1;i>=0&&j>=0;i--,j--){
if(chessboard[i][j] == 'Q')
return false;
}
for(int i = row-1,j = col+1;i>=0&&j<n;i--,j++){
if(chessboard[i][j] == 'Q')
return false;
}
return true;
}
};
方法二、回溯+哈希
记录棋盘上已经处于攻击范围的直线,将判断能否摆放新皇后的时间复杂度降为O(1)。
class Solution {
vector<vector<string>> res;
vector<string> chessboard;
vector<bool> columns;
vector<bool> diagonals1;
vector<bool> diagonals2;
public:
vector<vector<string>> solveNQueens(int n) {
chessboard.resize(n,string(n,'.'));
columns.resize(n,false);
//分别有2n-1条正斜线和反斜线
diagonals1.resize(2*n-1,false);
diagonals2.resize(2*n-1,false);
backtrack(n,0);
return res;
}
void backtrack(int n,int row){
if(row == n){
res.push_back(chessboard);
return;
}
for(int col = 0;col < n;col++){
if(columns[col])
continue;
int diag1 = row+col;
if(diagonals1[diag1])
continue;
int diag2 = row-col+(n-1);
if(diagonals2[diag2])
continue;
columns[col] = true;
diagonals1[diag1] = true;
diagonals2[diag2] = true;
chessboard[row][col] = 'Q';
backtrack(n,row+1);
chessboard[row][col] = '.';
columns[col] = false;
diagonals1[diag1] = false;
diagonals2[diag2] = false;
}
}
};
方法三、回溯+位运算
方法二中的哈希表可以改用位运算,节省空间开销。
class Solution {
vector<vector<string>> res;
vector<string> chessboard;
int columns; //第i个比特位为0表示第i列能放,为1表示不能放
int diagonals1;//第i个比特位为0表示第i条反斜线能放,为1表示不能放
int diagonals2;//正斜线的情况
public:
vector<vector<string>> solveNQueens(int n) {
chessboard.resize(n,string(n,'.'));
columns = 0;
//分别有2n-1条正斜线和反斜线,题目保证n<=9,那么2n-1<=17,int类型一共有32个比特位够用
diagonals1 = 0;
diagonals2 = 0;
backtrack(n,0);
return res;
}
void backtrack(int n,int row){
if(row == n){
res.push_back(chessboard);
return;
}
for(int col = 0;col < n;col++){
if(columns &(1<<col))
continue;
int diag1 = row+col;
if(diagonals1 &(1<<diag1))
continue;
int diag2 = row-col+(n-1);
if(diagonals2 &(1<<diag2))
continue;
columns |= (1<< col);
diagonals1 |= (1<< diag1);
diagonals2 |= (1<< diag2);
chessboard[row][col] = 'Q';
backtrack(n,row+1);
chessboard[row][col] = '.';
columns &= (~(1<< col));
diagonals1 &= (~(1<<diag1));
diagonals2 &= (~(1<<diag2));
}
}
};