51. N-Queens

目录

题目描述

方法一、回溯+每次判断是否合法

方法二、回溯+哈希

方法三、回溯+位运算


题目描述

51. N-Queens

方法一、回溯+每次判断是否合法

class Solution {
    vector<vector<string>> res;
    vector<string> chessboard;
public:
    vector<vector<string>> solveNQueens(int n) {
        chessboard.resize(n,string(n,'.'));
        backtrack(n,0);
        return res;
    }

    void backtrack(int n,int row){
        if(row == n){
            res.push_back(chessboard);
            return;
        }
        for(int col = 0;col < n;col++){
            if(valid(row,col,n)){
                chessboard[row][col] = 'Q';
                backtrack(n,row+1);
                chessboard[row][col] = '.';
            }
        }
    }

    bool valid(int row,int col,int n){
        for(int i = row-1;i>=0;i--){
            if(chessboard[i][col] == 'Q')
                return false;
        }
        for(int i = row-1,j = col-1;i>=0&&j>=0;i--,j--){
            if(chessboard[i][j] == 'Q')
                return false;
        }
        for(int i = row-1,j = col+1;i>=0&&j<n;i--,j++){
            if(chessboard[i][j] == 'Q')
                return false;
        }
        return true;
    }
};

方法二、回溯+哈希

记录棋盘上已经处于攻击范围的直线,将判断能否摆放新皇后的时间复杂度降为O(1)。

class Solution {
    vector<vector<string>> res;
    vector<string> chessboard;
    vector<bool> columns;
    vector<bool> diagonals1;
    vector<bool> diagonals2;
public:
    vector<vector<string>> solveNQueens(int n) {
        chessboard.resize(n,string(n,'.'));
        columns.resize(n,false);
        //分别有2n-1条正斜线和反斜线
        diagonals1.resize(2*n-1,false);
        diagonals2.resize(2*n-1,false);
        backtrack(n,0);
        return res;
    }

    void backtrack(int n,int row){
        if(row == n){
            res.push_back(chessboard);
            return;
        }
        for(int col = 0;col < n;col++){
            if(columns[col])
                continue;
            int diag1 = row+col;
            if(diagonals1[diag1])
                continue;
            int diag2 = row-col+(n-1);
            if(diagonals2[diag2])
                continue;
            columns[col] = true;
            diagonals1[diag1] = true;
            diagonals2[diag2] = true;
            chessboard[row][col] = 'Q';
            backtrack(n,row+1);
            chessboard[row][col] = '.';
            columns[col] = false;
            diagonals1[diag1] = false;
            diagonals2[diag2] = false;
        }
    }
};

方法三、回溯+位运算

方法二中的哈希表可以改用位运算,节省空间开销。

class Solution {
    vector<vector<string>> res;
    vector<string> chessboard;
    int columns;   //第i个比特位为0表示第i列能放,为1表示不能放
    int diagonals1;//第i个比特位为0表示第i条反斜线能放,为1表示不能放
    int diagonals2;//正斜线的情况
public:
    vector<vector<string>> solveNQueens(int n) {
        chessboard.resize(n,string(n,'.'));
        columns = 0;
        //分别有2n-1条正斜线和反斜线,题目保证n<=9,那么2n-1<=17,int类型一共有32个比特位够用
        diagonals1 = 0;
        diagonals2 = 0;
        backtrack(n,0);
        return res;
    }

    void backtrack(int n,int row){
        if(row == n){
            res.push_back(chessboard);
            return;
        }
        for(int col = 0;col < n;col++){
            if(columns &(1<<col))
                continue;
            int diag1 = row+col;
            if(diagonals1 &(1<<diag1))
                continue;
            int diag2 = row-col+(n-1);
            if(diagonals2 &(1<<diag2))
                continue;
            columns    |= (1<< col);
            diagonals1 |= (1<< diag1);
            diagonals2 |= (1<< diag2);
            chessboard[row][col] = 'Q';
            backtrack(n,row+1);
            chessboard[row][col] = '.';
            columns    &= (~(1<< col));
            diagonals1 &= (~(1<<diag1));
            diagonals2 &= (~(1<<diag2));
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值