数据扩增方法
- 用途:增加数据集中样本的数据量,同时也可以有效增加样本的语义空间,防止模型过拟合。
- 注意:
- 不同的数据,拥有不同的数据扩增方法;
- 数据扩增方法需要考虑合理性,不要随意使用;
- 数据扩增方法需要与具体任务相结合,同时要考虑到标签的变化。
OpenCV和albumentations数据扩增
OpenCV
- 读取图片 cv.imread
# 首先读取原始图片
img = cv2.imread(train_mask[’name’].iloc[0])
mask = rle_decode(train_mask[’mask’].iloc[0])
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plt.imshow(img)
plt.subplot(1, 2, 2)
plt.imshow(mask)
- 翻转 cv2.flip
# 竖直(上下)翻转
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plt.imshow(cv2.flip(img, 0))
plt.subplot(1, 2, 2)
plt.imshow(cv2.flip(mask, 0))
# 水平翻转
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plt.imshow(cv2.flip(img, 0))
plt.subplot(1, 2, 2)
plt.imshow(cv2.flip(mask, 0))
- 随机裁剪 (这里使用的其实是切片操作)
# 随机裁剪
x, y = np.random.randint(0, 256), np.random.randint(0, 256)
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plt.imshow(img[x:x+256, y:y+256])
plt.subplot(1, 2, 2)
plt.imshow(mask[x:x+256, y:y+256])
albumentations
- albumentations 它可以对数据集进行逐像素的转换,如模糊、下采样、高斯造点、高斯模糊、动态模糊、RGB 转换、随机雾化等;也可以进行空间转换(同时也会对目标进行转换),如裁剪、翻转、随机裁剪等。
- 水平翻转: albumentations.HorizontalFlip
- 随机裁剪:albumentations.Crop
- 旋转:albumentations.ShiftScaleRotate
import albumentations as A
# 水平翻转
augments = A.HorizontalFlip(p=1)(image=img, mask=mask)
img_aug, mask_aug = augments[’image’], augments[’mask’]
# 随机裁剪
augments = A.RandomCrop(p=1, height=256, width=256)(image=img, mask=mask)
img_aug, mask_aug = augments[’image’], augments[’mask’]
# 旋转
augments = A.ShiftScaleRotate(p=1)(image=img, mask=mask)
img_aug, mask_aug = augments[’image’], augments[’mask’]
- 组合多个数据扩增操作
trfm = A.Compose([
A.Resize(256, 256),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(),
])
augments = trfm(image=img, mask=mask)
img_aug, mask_aug = augments[’image’], augments[’mask’]
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plt.imshow(augments[’image’])
plt.subplot(1, 2, 2)
plt.imshow(augments[’mask’])aug
Pytorch 数据读取
- Dataset:对数据进行读取并进行数据扩增;
- DataLoder:数据读取器,对 Dataset 进行封装并进行批量读取;
import torch.utils.data as D
class TianChiDataset(D.Dataset):
def __init__(self, paths, rles, transform):
self.paths = paths
self.rles = rles
self.transform = transform
self.len = len(paths)
def __getitem__(self, index):
img = cv2.imread(self.paths[index])
mask = rle_decode(self.rles[index])
augments = self.transform(image=img, mask=mask)
return self.as_tensor(augments[’image’]), augments[’mask’][None]
def __len__(self):
return self.len
import albumentations as A
trfm = A.Compose([
A.Resize(IMAGE_SIZE, IMAGE_SIZE),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(),
])
dataset = TianChiDataset(
train_mask[’name’].values,
train_mask[’mask’].fillna(’’).values,
trfm
)
loader = D.DataLoader(
dataset, batch_size=10, shuffle=True,num_workers=0)